IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i8p1505-d224714.html
   My bibliography  Save this article

Uncertainty Quantification of a Coupled Model for Wind Prediction at a Wind Farm in Japan

Author

Listed:
  • Jonghoon Jin

    (Department of Mechanical Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
    These authors contributed equally to this work.)

  • Yuzhang Che

    (Department of Mechanical Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
    College of Atmospheric Science, Chengdu University of Information Technology, Chengdu 610225, China)

  • Jiafeng Zheng

    (College of Atmospheric Science, Chengdu University of Information Technology, Chengdu 610225, China
    These authors contributed equally to this work.)

  • Feng Xiao

    (Department of Mechanical Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
    These authors contributed equally to this work.)

Abstract

Reliable and accurate short-term prediction of wind speed at hub height is very important to optimize the integration of wind energy into existing electrical systems. To this end, a coupled model based on the Weather Research Forecasting (WRF) model and Open Source Field Operation and Manipulation (OpenFOAM) Computational Fluid Dynamics (CFD) model is proposed to improve the forecast of the wind fields over complex terrain regions. The proposed model has been validated with the quality-controlled observations of 15 turbine sites in a target wind farm in Japan. The numerical results show that the coupled model provides more precise forecasts compared to the WRF alone forecasts, with the overall improvements of 26%, 22% and 4% in mean error (ME), root mean square error (RMSE) and correlation coefficient (CC), respectively. As the first step to explore further improvement of the coupled system, the polynomial chaos expansion (PCE) approach is adopted to quantitatively evaluate the effects of several parameters in the coupled model. The statistics from the uncertainty quantification results show that the uncertainty in the inflow boundary conditions to the CFD model affects more dominantly the hub-height wind prediction in comparison with other parameters in the turbulence model, which suggests an effective approach to parameterize and assimilate the coupling interface of the model.

Suggested Citation

  • Jonghoon Jin & Yuzhang Che & Jiafeng Zheng & Feng Xiao, 2019. "Uncertainty Quantification of a Coupled Model for Wind Prediction at a Wind Farm in Japan," Energies, MDPI, vol. 12(8), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1505-:d:224714
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/8/1505/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/8/1505/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xsitaaz T. Chadee & Naresh R. Seegobin & Ricardo M. Clarke, 2017. "Optimizing the Weather Research and Forecasting (WRF) Model for Mapping the Near-Surface Wind Resources over the Southernmost Caribbean Islands of Trinidad and Tobago," Energies, MDPI, vol. 10(7), pages 1-23, July.
    2. Brandon Storm & Sukanta Basu, 2010. "The WRF Model Forecast-Derived Low-Level Wind Shear Climatology over the United States Great Plains," Energies, MDPI, vol. 3(2), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Jie & Möhrlen, Corinna & Göçmen, Tuhfe & Kelly, Mark & Wessel, Arne & Giebel, Gregor, 2022. "Uncovering wind power forecasting uncertainty sources and their propagation through the whole modelling chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    2. Dong, Xinghui & Li, Jia & Gao, Di & Zheng, Kai, 2020. "Wind speed modeling for cascade clusters of wind turbines part 1: The cascade clusters of wind turbines," Energy, Elsevier, vol. 205(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sward, J.A. & Ault, T.R. & Zhang, K.M., 2023. "Spatial biases revealed by LiDAR in a multiphysics WRF ensemble designed for offshore wind," Energy, Elsevier, vol. 262(PA).
    2. Xsitaaz T. Chadee & Naresh R. Seegobin & Ricardo M. Clarke, 2017. "Optimizing the Weather Research and Forecasting (WRF) Model for Mapping the Near-Surface Wind Resources over the Southernmost Caribbean Islands of Trinidad and Tobago," Energies, MDPI, vol. 10(7), pages 1-23, July.
    3. Tuy, Soklin & Lee, Han Soo & Chreng, Karodine, 2022. "Integrated assessment of offshore wind power potential using Weather Research and Forecast (WRF) downscaling with Sentinel-1 satellite imagery, optimal sites, annual energy production and equivalent C," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    4. Mekalathur B Hemanth Kumar & Saravanan Balasubramaniyan & Sanjeevikumar Padmanaban & Jens Bo Holm-Nielsen, 2019. "Wind Energy Potential Assessment by Weibull Parameter Estimation Using Multiverse Optimization Method: A Case Study of Tirumala Region in India," Energies, MDPI, vol. 12(11), pages 1-21, June.
    5. Denis E.K. Dzebre & Muyiwa S. Adaramola, 2019. "Impact of Selected Options in the Weather Research and Forecasting Model on Surface Wind Hindcasts in Coastal Ghana," Energies, MDPI, vol. 12(19), pages 1-16, September.
    6. Dzebre, Denis E.K. & Adaramola, Muyiwa S., 2020. "A preliminary sensitivity study of Planetary Boundary Layer parameterisation schemes in the weather research and forecasting model to surface winds in coastal Ghana," Renewable Energy, Elsevier, vol. 146(C), pages 66-86.
    7. Gibson, Peter B. & Cullen, Nicolas J., 2015. "Synoptic and sub-synoptic circulation effects on wind resource variability – A case study from a coastal terrain setting in New Zealand," Renewable Energy, Elsevier, vol. 78(C), pages 253-263.
    8. Takeshi Misaki & Teruo Ohsawa & Mizuki Konagaya & Susumu Shimada & Yuko Takeyama & Satoshi Nakamura, 2019. "Accuracy Comparison of Coastal Wind Speeds between WRF Simulations Using Different Input Datasets in Japan," Energies, MDPI, vol. 12(14), pages 1-20, July.
    9. Gunnell, Yanni & Mietton, Michel & Touré, Amadou Abdourhamane & Fujiki, Kenji, 2023. "Potential for wind farming in West Africa from an analysis of daily peak wind speeds and a review of low-level jet dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    10. Wu, Chunlei & Luo, Kun & Wang, Qiang & Fan, Jianren, 2022. "Simulated potential wind power sensitivity to the planetary boundary layer parameterizations combined with various topography datasets in the weather research and forecasting model," Energy, Elsevier, vol. 239(PB).
    11. Rebecca J. Barthelmie & Tristan J. Shepherd & Jeanie A. Aird & Sara C. Pryor, 2020. "Power and Wind Shear Implications of Large Wind Turbine Scenarios in the US Central Plains," Energies, MDPI, vol. 13(16), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1505-:d:224714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.