IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i10p1566-d114597.html
   My bibliography  Save this article

The Characteristics of Methane Combustion Suppression by Water Mist and Its Engineering Applications

Author

Listed:
  • Rongkun Pan

    (Department of Safety & Science Engineering, Henan Polytechnic University, Jiaozuo 454003, China
    The Collaborative Innovation Center of Coal Safety Production of Henan Province, Henan Polytechnic University, Jiaozuo 454003, China
    Henan Key Laboratory of Prevention and Cure of Mine Methane & Fires, Jiaozuo 45403, China)

  • Zejun Xiao

    (Department of Safety & Science Engineering, Henan Polytechnic University, Jiaozuo 454003, China)

  • Minggao Yu

    (Department of Safety & Science Engineering, Henan Polytechnic University, Jiaozuo 454003, China
    State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China)

Abstract

To safely mine coal, engineers must prevent gas combustion and explosions, as well as seek feasible and reasonable techniques to control for these types of incidents. This paper analyzes the causes and characteristics of methane combustion and explosions. Water mist is proposed to prevent and control methane combustion in an underground confined space. We constructed an experiment platform to investigate the suppression of methane combustion using water mist for different conditions. The experimental results showed that water mist is highly effective for methane flame inhibition. The flame was extinguished with water mist endothermic cooling. However, the annular regions of water vapor around the fire played a vital role in flame extinction. Water from the evaporating mist replaces the oxygen available to the fuel. Additionally, the time required for fuel ignition is prolonged. For these reasons, the water particle action to flame surface is reinforced and the fuel’s reaction with air is delayed. As a result, flame stretching and disturbances occur, which serve to extinguish the flame. Engineering application tests were carried out in the goaf, drill hole and upper-corner to investigate the prevention and control of methane gas combustion, with the results showing a good application effect.

Suggested Citation

  • Rongkun Pan & Zejun Xiao & Minggao Yu, 2017. "The Characteristics of Methane Combustion Suppression by Water Mist and Its Engineering Applications," Energies, MDPI, vol. 10(10), pages 1-14, October.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1566-:d:114597
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/10/1566/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/10/1566/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rongkun Pan & Yuanping Cheng & Liang Yuan & Minggao Yu & Jun Dong, 2014. "Effect of bedding structural diversity of coal on permeability evolution and gas disasters control with coal mining," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 531-546, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chaoyu Hao & Yanling Chen & Jiren Wang & Cunbao Deng & Guang Xu & Fengwei Dai & Rui Si & Hongfei Wang & Haoyu Wang, 2018. "Study on the Effect of Iron-Based Deoxidizing Inhibitors for Coal Spontaneous Combustion Prevention," Energies, MDPI, vol. 11(4), pages 1-10, March.
    2. Yimin Zhang & Yan Wang & Ligang Zheng & Tao Yang & Jianliang Gao & Zhenhua Li, 2018. "Effect of Pristine Palygorskite Powders on Explosion Characteristics of Methane-Air Premixed Gas," Energies, MDPI, vol. 11(10), pages 1-12, September.
    3. Quan Wang & Shanghao Liu & Chi-min Shu & Yibin Ding & Zhimin Li, 2017. "Influence of Different Types of Obstacles on the Propagation of Premixed Methane-Air Flames in a Half-Open Tube," Energies, MDPI, vol. 10(11), pages 1-13, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Yong & Yang, Fuqiang, 2023. "Mining safety research in China: Understanding safety research trends and future demands for sustainable mining industry," Resources Policy, Elsevier, vol. 83(C).
    2. Jilin Wang & Ming Li & Shaochun Xu & Zhenghui Qu & Bo Jiang, 2018. "Simulation of Ground Stress Field and Advanced Prediction of Gas Outburst Risks in the Non-Mining Area of Xinjing Mine, China," Energies, MDPI, vol. 11(5), pages 1-16, May.
    3. Yi Xue & Feng Gao & Xingguang Liu, 2015. "Effect of damage evolution of coal on permeability variation and analysis of gas outburst hazard with coal mining," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 999-1013, November.
    4. Zhaohui Chong & Qiangling Yao & Xuehua Li, 2019. "Experimental Investigation of Fracture Propagation Behavior Induced by Hydraulic Fracturing in Anisotropic Shale Cores," Energies, MDPI, vol. 12(6), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1566-:d:114597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.