IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i6p1124-d216360.html
   My bibliography  Save this article

Implementation of Optimal Two-Stage Scheduling of Energy Storage System Based on Big-Data-Driven Forecasting—An Actual Case Study in a Campus Microgrid

Author

Listed:
  • Byeong-Cheol Jeong

    (Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyungbuk 37673, Korea)

  • Dong-Hwan Shin

    (Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyungbuk 37673, Korea)

  • Jae-Beom Im

    (Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyungbuk 37673, Korea)

  • Jae-Young Park

    (Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyungbuk 37673, Korea)

  • Young-Jin Kim

    (Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyungbuk 37673, Korea)

Abstract

Optimal operation scheduling of energy storage systems (ESSs) has been considered as an effective way to cope with uncertainties arising in modern grid operation such as the inherent intermittency of the renewable energy sources (RESs) and load variations. This paper proposes a scheduling algorithm where ESS power inputs are optimally determined to minimize the microgrid (MG) operation cost. The proposed algorithm consists of two stages. In the first stage, hourly schedules during a day are optimized one day in advance with the objective of minimizing the operating cost. In the second stage, the optimal schedule obtained from the first stage is repeatedly updated every 5 min during the day of operation to compensate for the uncertainties in load demand and RES output power. The ESS model is developed considering operating efficiencies and then incorporated in mixed integer linear programming (MILP). Penalty functions are also considered to acquire feasible optimal solutions even under large forecasting errors in RES generation and load variation. The proposed algorithm is verified in a campus MG, implemented using ESSs and photovoltaic (PV) arrays. The field test results are obtained using open-source software and then compared with those acquired using commercial software.

Suggested Citation

  • Byeong-Cheol Jeong & Dong-Hwan Shin & Jae-Beom Im & Jae-Young Park & Young-Jin Kim, 2019. "Implementation of Optimal Two-Stage Scheduling of Energy Storage System Based on Big-Data-Driven Forecasting—An Actual Case Study in a Campus Microgrid," Energies, MDPI, vol. 12(6), pages 1-20, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1124-:d:216360
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/6/1124/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/6/1124/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiuyun Wang & Shaoxin Chen & Yibing Zhou & Jian Wang & Yang Cui, 2018. "Optimal Dispatch of Microgrid with Combined Heat and Power System Considering Environmental Cost," Energies, MDPI, vol. 11(10), pages 1-23, September.
    2. Nemati, Mohsen & Braun, Martin & Tenbohlen, Stefan, 2018. "Optimization of unit commitment and economic dispatch in microgrids based on genetic algorithm and mixed integer linear programming," Applied Energy, Elsevier, vol. 210(C), pages 944-963.
    3. Pengwei Cong & Wei Tang & Lu Zhang & Bo Zhang & Yongxiang Cai, 2017. "Day-Ahead Active Power Scheduling in Active Distribution Network Considering Renewable Energy Generation Forecast Errors," Energies, MDPI, vol. 10(9), pages 1-20, August.
    4. Chen, Yen-Haw & Lu, Su-Ying & Chang, Yung-Ruei & Lee, Ta-Tung & Hu, Ming-Che, 2013. "Economic analysis and optimal energy management models for microgrid systems: A case study in Taiwan," Applied Energy, Elsevier, vol. 103(C), pages 145-154.
    5. Morais, Hugo & Kádár, Péter & Faria, Pedro & Vale, Zita A. & Khodr, H.M., 2010. "Optimal scheduling of a renewable micro-grid in an isolated load area using mixed-integer linear programming," Renewable Energy, Elsevier, vol. 35(1), pages 151-156.
    6. Kabalci, Yasin, 2016. "A survey on smart metering and smart grid communication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 302-318.
    7. Sanseverino, Eleonora Riva & Di Silvestre, Maria Luisa & Ippolito, Mariano Giuseppe & De Paola, Alessandra & Lo Re, Giuseppe, 2011. "An execution, monitoring and replanning approach for optimal energy management in microgrids," Energy, Elsevier, vol. 36(5), pages 3429-3436.
    8. Manur, Ashray & Venkataramanan, Giri & Sehloff, David, 2018. "Simple electric utility platform: A hardware/software solution for operating emergent microgrids," Applied Energy, Elsevier, vol. 210(C), pages 748-763.
    9. Hyeon-Jin Moon & Young Jin Kim & Jae Won Chang & Seung-Il Moon, 2019. "Decentralised Active Power Control Strategy for Real-Time Power Balance in an Isolated Microgrid with an Energy Storage System and Diesel Generators," Energies, MDPI, vol. 12(3), pages 1-22, February.
    10. Eun-Kyu Lee & Wenbo Shi & Rajit Gadh & Wooseong Kim, 2016. "Design and Implementation of a Microgrid Energy Management System," Sustainability, MDPI, vol. 8(11), pages 1-19, November.
    11. Cagnano, A. & Caldarulo Bugliari, A. & De Tuglie, E., 2018. "A cooperative control for the reserve management of isolated microgrids," Applied Energy, Elsevier, vol. 218(C), pages 256-265.
    12. Sreedharan, P. & Farbes, J. & Cutter, E. & Woo, C.K. & Wang, J., 2016. "Microgrid and renewable generation integration: University of California, San Diego," Applied Energy, Elsevier, vol. 169(C), pages 709-720.
    13. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2018. "Microgrids energy management systems: A critical review on methods, solutions, and prospects," Applied Energy, Elsevier, vol. 222(C), pages 1033-1055.
    14. Young-Sik Jang & Mun-Kyeom Kim, 2017. "A Dynamic Economic Dispatch Model for Uncertain Power Demands in an Interconnected Microgrid," Energies, MDPI, vol. 10(3), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Jangkyum & Oh, Hyeontaek & Choi, Jun Kyun, 2022. "Learning based cost optimal energy management model for campus microgrid systems," Applied Energy, Elsevier, vol. 311(C).
    2. Zhu, Junjie & Huang, Shengjun & Liu, Yajie & Lei, Hongtao & Sang, Bo, 2021. "Optimal energy management for grid-connected microgrids via expected-scenario-oriented robust optimization," Energy, Elsevier, vol. 216(C).
    3. Amrutha Raju Battula & Sandeep Vuddanti & Surender Reddy Salkuti, 2021. "Review of Energy Management System Approaches in Microgrids," Energies, MDPI, vol. 14(17), pages 1-32, September.
    4. Àlex Alonso-Travesset & Helena Martín & Sergio Coronas & Jordi de la Hoz, 2022. "Optimization Models under Uncertainty in Distributed Generation Systems: A Review," Energies, MDPI, vol. 15(5), pages 1-40, March.
    5. Mahmoud Elkazaz & Mark Sumner & David Thomas, 2019. "Real-Time Energy Management for a Small Scale PV-Battery Microgrid: Modeling, Design, and Experimental Verification," Energies, MDPI, vol. 12(14), pages 1-26, July.
    6. Erdal Irmak & Ersan Kabalci & Yasin Kabalci, 2023. "Digital Transformation of Microgrids: A Review of Design, Operation, Optimization, and Cybersecurity," Energies, MDPI, vol. 16(12), pages 1-58, June.
    7. Gi-Ho Lee & Jae-Young Park & Seung-Jun Ham & Young-Jin Kim, 2020. "Comparative Study on Optimization Solvers for Implementation of a Two-Stage Economic Dispatch Strategy in a Microgrid Energy Management System," Energies, MDPI, vol. 13(5), pages 1-21, March.
    8. Hamidreza Mirtaheri & Piero Macaluso & Maurizio Fantino & Marily Efstratiadi & Sotiris Tsakanikas & Panagiotis Papadopoulos & Andrea Mazza, 2021. "Hybrid Forecast and Control Chain for Operation of Flexibility Assets in Micro-Grids," Energies, MDPI, vol. 14(21), pages 1-22, November.
    9. Yaqian Jing & Honglei Wang & Yujie Hu & Chengjiang Li, 2022. "A Grid-Connected Microgrid Model and Optimal Scheduling Strategy Based on Hybrid Energy Storage System and Demand-Side Response," Energies, MDPI, vol. 15(3), pages 1-21, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oussama Ouramdane & Elhoussin Elbouchikhi & Yassine Amirat & Ehsan Sedgh Gooya, 2021. "Optimal Sizing and Energy Management of Microgrids with Vehicle-to-Grid Technology: A Critical Review and Future Trends," Energies, MDPI, vol. 14(14), pages 1-45, July.
    2. Gi-Ho Lee & Jae-Young Park & Seung-Jun Ham & Young-Jin Kim, 2020. "Comparative Study on Optimization Solvers for Implementation of a Two-Stage Economic Dispatch Strategy in a Microgrid Energy Management System," Energies, MDPI, vol. 13(5), pages 1-21, March.
    3. Jin, Ming & Feng, Wei & Liu, Ping & Marnay, Chris & Spanos, Costas, 2017. "MOD-DR: Microgrid optimal dispatch with demand response," Applied Energy, Elsevier, vol. 187(C), pages 758-776.
    4. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    5. Clarke, Will Challis & Brear, Michael John & Manzie, Chris, 2020. "Control of an isolated microgrid using hierarchical economic model predictive control," Applied Energy, Elsevier, vol. 280(C).
    6. Sahoo, Subham & Pullaguram, Deepak & Mishra, Sukumar & Wu, Jianzhong & Senroy, Nilanjan, 2018. "A containment based distributed finite-time controller for bounded voltage regulation & proportionate current sharing in DC microgrids," Applied Energy, Elsevier, vol. 228(C), pages 2526-2538.
    7. Zhao, Bo & Zhang, Xuesong & Li, Peng & Wang, Ke & Xue, Meidong & Wang, Caisheng, 2014. "Optimal sizing, operating strategy and operational experience of a stand-alone microgrid on Dongfushan Island," Applied Energy, Elsevier, vol. 113(C), pages 1656-1666.
    8. de la Hoz, Jordi & Martín, Helena & Alonso, Alex & Carolina Luna, Adriana & Matas, José & Vasquez, Juan C. & Guerrero, Josep M., 2019. "Regulatory-framework-embedded energy management system for microgrids: The case study of the Spanish self-consumption scheme," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    9. Emilio Ghiani & Alessandro Serpi & Virginia Pilloni & Giuliana Sias & Marco Simone & Gianluca Marcialis & Giuliano Armano & Paolo Attilio Pegoraro, 2018. "A Multidisciplinary Approach for the Development of Smart Distribution Networks," Energies, MDPI, vol. 11(10), pages 1-29, September.
    10. Raya-Armenta, Jose Maurilio & Bazmohammadi, Najmeh & Avina-Cervantes, Juan Gabriel & Sáez, Doris & Vasquez, Juan C. & Guerrero, Josep M., 2021. "Energy management system optimization in islanded microgrids: An overview and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    11. Dutton, Spencer & Marnay, Chris & Feng, Wei & Robinson, Matthew & Mammoli, Andrea, 2019. "Moore vs. Murphy: Tradeoffs between complexity and reliability in distributed energy system scheduling using software-as-a-service," Applied Energy, Elsevier, vol. 238(C), pages 1126-1137.
    12. Mohammad Ali Taghikhani & Behnam Zangeneh, 2022. "Optimal energy scheduling of micro-grids considering the uncertainty of solar and wind renewable resources," Journal of Scheduling, Springer, vol. 25(5), pages 567-576, October.
    13. Mallol-Poyato, R. & Salcedo-Sanz, S. & Jiménez-Fernández, S. & Díaz-Villar, P., 2015. "Optimal discharge scheduling of energy storage systems in MicroGrids based on hyper-heuristics," Renewable Energy, Elsevier, vol. 83(C), pages 13-24.
    14. Pascual, Julio & Arcos-Aviles, Diego & Ursúa, Alfredo & Sanchis, Pablo & Marroyo, Luis, 2021. "Energy management for an electro-thermal renewable–based residential microgrid with energy balance forecasting and demand side management," Applied Energy, Elsevier, vol. 295(C).
    15. Lilia Tightiz & Hyosik Yang & Mohammad Jalil Piran, 2020. "A Survey on Enhanced Smart Micro-Grid Management System with Modern Wireless Technology Contribution," Energies, MDPI, vol. 13(9), pages 1-21, May.
    16. Bracco, Stefano & Delfino, Federico & Pampararo, Fabio & Robba, Michela & Rossi, Mansueto, 2014. "A mathematical model for the optimal operation of the University of Genoa Smart Polygeneration Microgrid: Evaluation of technical, economic and environmental performance indicators," Energy, Elsevier, vol. 64(C), pages 912-922.
    17. Hu, Mian & Wang, Yan-Wu & Xiao, Jiang-Wen & Lin, Xiangning, 2019. "Multi-energy management with hierarchical distributed multi-scale strategy for pelagic islanded microgrid clusters," Energy, Elsevier, vol. 185(C), pages 910-921.
    18. Roslan, M.F. & Hannan, M.A. & Ker, Pin Jern & Uddin, M.N., 2019. "Microgrid control methods toward achieving sustainable energy management," Applied Energy, Elsevier, vol. 240(C), pages 583-607.
    19. Shahryari, E. & Shayeghi, H. & Mohammadi-ivatloo, B. & Moradzadeh, M., 2019. "A copula-based method to consider uncertainties for multi-objective energy management of microgrid in presence of demand response," Energy, Elsevier, vol. 175(C), pages 879-890.
    20. Wang, Jing & Zhao, Changhong & Pratt, Annabelle & Baggu, Murali, 2018. "Design of an advanced energy management system for microgrid control using a state machine," Applied Energy, Elsevier, vol. 228(C), pages 2407-2421.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1124-:d:216360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.