IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7252-d671103.html
   My bibliography  Save this article

Hybrid Forecast and Control Chain for Operation of Flexibility Assets in Micro-Grids

Author

Listed:
  • Hamidreza Mirtaheri

    (Links Foundation, Via Pier Carlo Boggio 61, 10138 Turin, TO, Italy)

  • Piero Macaluso

    (Links Foundation, Via Pier Carlo Boggio 61, 10138 Turin, TO, Italy)

  • Maurizio Fantino

    (Links Foundation, Via Pier Carlo Boggio 61, 10138 Turin, TO, Italy)

  • Marily Efstratiadi

    (Elin Verd, Pigon 33, Kifissia, 14564 Athina, Greece)

  • Sotiris Tsakanikas

    (Elin Verd, Pigon 33, Kifissia, 14564 Athina, Greece)

  • Panagiotis Papadopoulos

    (Elin Verd, Pigon 33, Kifissia, 14564 Athina, Greece)

  • Andrea Mazza

    (Dipartimento Energia “Galileo Ferraris”, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, TO, Italy)

Abstract

Studies on forecasting and optimal exploitation of renewable resources (especially within microgrids) were already introduced in the past. However, in several research papers, the constraints regarding integration within real applications were relaxed, i.e., this kind of research provides impractical solutions, although they are very complex. In this paper, the computational components (such as photovoltaic and load forecasting, and resource scheduling and optimization) are brought together into a practical implementation, introducing an automated system through a chain of independent services aiming to allow forecasting, optimization, and control. Encountered challenges may provide a valuable indication to make ground with this design, especially in cases for which the trade-off between sophistication and available resources should be rather considered. The research work was conducted to identify the requirements for controlling a set of flexibility assets—namely, electrochemical battery storage system and electric car charging station—for a semicommercial use-case by minimizing the operational energy costs for the microgrid considering static and dynamic parameters of the assets.

Suggested Citation

  • Hamidreza Mirtaheri & Piero Macaluso & Maurizio Fantino & Marily Efstratiadi & Sotiris Tsakanikas & Panagiotis Papadopoulos & Andrea Mazza, 2021. "Hybrid Forecast and Control Chain for Operation of Flexibility Assets in Micro-Grids," Energies, MDPI, vol. 14(21), pages 1-22, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7252-:d:671103
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7252/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7252/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sbrana, Giacomo & Silvestrini, Andrea, 2014. "Random switching exponential smoothing and inventory forecasting," International Journal of Production Economics, Elsevier, vol. 156(C), pages 283-294.
    2. Carvallo, Juan Pablo & Larsen, Peter H. & Sanstad, Alan H. & Goldman, Charles A., 2018. "Long term load forecasting accuracy in electric utility integrated resource planning," Energy Policy, Elsevier, vol. 119(C), pages 410-422.
    3. Hao, Ying & Dong, Lei & Liang, Jun & Liao, Xiaozhong & Wang, Lijie & Shi, Lefeng, 2020. "Power forecasting-based coordination dispatch of PV power generation and electric vehicles charging in microgrid," Renewable Energy, Elsevier, vol. 155(C), pages 1191-1210.
    4. Ren, Ye & Suganthan, P.N. & Srikanth, N., 2015. "Ensemble methods for wind and solar power forecasting—A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 82-91.
    5. Skarvelis-Kazakos, Spyros & Papadopoulos, Panagiotis & Grau Unda, Iñaki & Gorman, Terry & Belaidi, Abdelhafid & Zigan, Stefan, 2016. "Multiple energy carrier optimisation with intelligent agents," Applied Energy, Elsevier, vol. 167(C), pages 323-335.
    6. Wen, Lulu & Zhou, Kaile & Yang, Shanlin & Lu, Xinhui, 2019. "Optimal load dispatch of community microgrid with deep learning based solar power and load forecasting," Energy, Elsevier, vol. 171(C), pages 1053-1065.
    7. Hong, Tao & Fan, Shu, 2016. "Probabilistic electric load forecasting: A tutorial review," International Journal of Forecasting, Elsevier, vol. 32(3), pages 914-938.
    8. Byeong-Cheol Jeong & Dong-Hwan Shin & Jae-Beom Im & Jae-Young Park & Young-Jin Kim, 2019. "Implementation of Optimal Two-Stage Scheduling of Energy Storage System Based on Big-Data-Driven Forecasting—An Actual Case Study in a Campus Microgrid," Energies, MDPI, vol. 12(6), pages 1-20, March.
    9. Parhum Delgoshaei & James D. Freihaut, 2019. "Development of a Control Platform for a Building-Scale Hybrid Solar PV-Natural Gas Microgrid," Energies, MDPI, vol. 12(21), pages 1-30, November.
    10. Gang Xu & Bingxu Zhang & Le Yang & Yi Wang, 2021. "Active and Reactive Power Collaborative Optimization for Active Distribution Networks Considering Bi-Directional V2G Behavior," Sustainability, MDPI, vol. 13(11), pages 1-26, June.
    11. Erasmo Cadenas & Wilfrido Rivera & Rafael Campos-Amezcua & Christopher Heard, 2016. "Wind Speed Prediction Using a Univariate ARIMA Model and a Multivariate NARX Model," Energies, MDPI, vol. 9(2), pages 1-15, February.
    12. Diagne, Maimouna & David, Mathieu & Lauret, Philippe & Boland, John & Schmutz, Nicolas, 2013. "Review of solar irradiance forecasting methods and a proposition for small-scale insular grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 65-76.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    2. van der Meer, D.W. & Widén, J. & Munkhammar, J., 2018. "Review on probabilistic forecasting of photovoltaic power production and electricity consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1484-1512.
    3. N. Yogambal Jayalakshmi & R. Shankar & Umashankar Subramaniam & I. Baranilingesan & Alagar Karthick & Balasubramaniam Stalin & Robbi Rahim & Aritra Ghosh, 2021. "Novel Multi-Time Scale Deep Learning Algorithm for Solar Irradiance Forecasting," Energies, MDPI, vol. 14(9), pages 1-23, April.
    4. Erik Heilmann & Janosch Henze & Heike Wetzel, 2021. "Machine learning in energy forecasts with an application to high frequency electricity consumption data," MAGKS Papers on Economics 202135, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    5. Ijaz Ul Haq & Amin Ullah & Samee Ullah Khan & Noman Khan & Mi Young Lee & Seungmin Rho & Sung Wook Baik, 2021. "Sequential Learning-Based Energy Consumption Prediction Model for Residential and Commercial Sectors," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
    6. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
    7. Pedregal, Diego J. & Trapero, Juan R., 2021. "Adjusted combination of moving averages: A forecasting system for medium-term solar irradiance," Applied Energy, Elsevier, vol. 298(C).
    8. Roman V. Klyuev & Irbek D. Morgoev & Angelika D. Morgoeva & Oksana A. Gavrina & Nikita V. Martyushev & Egor A. Efremenkov & Qi Mengxu, 2022. "Methods of Forecasting Electric Energy Consumption: A Literature Review," Energies, MDPI, vol. 15(23), pages 1-33, November.
    9. Rodrigues, Eugénio & Gomes, Álvaro & Gaspar, Adélio Rodrigues & Henggeler Antunes, Carlos, 2018. "Estimation of renewable energy and built environment-related variables using neural networks – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 959-988.
    10. Zografidou, Eleni & Petridis, Konstantinos & Petridis, Nikolaos E. & Arabatzis, Garyfallos, 2017. "A financial approach to renewable energy production in Greece using goal programming," Renewable Energy, Elsevier, vol. 108(C), pages 37-51.
    11. Kück, Mirko & Freitag, Michael, 2021. "Forecasting of customer demands for production planning by local k-nearest neighbor models," International Journal of Production Economics, Elsevier, vol. 231(C).
    12. Samu, Remember & Calais, Martina & Shafiullah, G.M. & Moghbel, Moayed & Shoeb, Md Asaduzzaman & Nouri, Bijan & Blum, Niklas, 2021. "Applications for solar irradiance nowcasting in the control of microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    13. Yang, Dazhi & Wu, Elynn & Kleissl, Jan, 2019. "Operational solar forecasting for the real-time market," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1499-1519.
    14. Ahmed, Adil & Khalid, Muhammad, 2019. "A review on the selected applications of forecasting models in renewable power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 9-21.
    15. Fabio Corti & Antonino Laudani & Gabriele Maria Lozito & Alberto Reatti, 2020. "Computationally Efficient Modeling of DC-DC Converters for PV Applications," Energies, MDPI, vol. 13(19), pages 1-18, September.
    16. Lan, Hai & Yin, He & Hong, Ying-Yi & Wen, Shuli & Yu, David C. & Cheng, Peng, 2018. "Day-ahead spatio-temporal forecasting of solar irradiation along a navigation route," Applied Energy, Elsevier, vol. 211(C), pages 15-27.
    17. Àlex Alonso-Travesset & Helena Martín & Sergio Coronas & Jordi de la Hoz, 2022. "Optimization Models under Uncertainty in Distributed Generation Systems: A Review," Energies, MDPI, vol. 15(5), pages 1-40, March.
    18. Erdener, Burcin Cakir & Feng, Cong & Doubleday, Kate & Florita, Anthony & Hodge, Bri-Mathias, 2022. "A review of behind-the-meter solar forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    19. Nie, Yuhao & Li, Xiatong & Paletta, Quentin & Aragon, Max & Scott, Andea & Brandt, Adam, 2024. "Open-source sky image datasets for solar forecasting with deep learning: A comprehensive survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    20. Mahmoud Elkazaz & Mark Sumner & David Thomas, 2019. "Real-Time Energy Management for a Small Scale PV-Battery Microgrid: Modeling, Design, and Experimental Verification," Energies, MDPI, vol. 12(14), pages 1-26, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7252-:d:671103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.