IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i4p767-d208947.html
   My bibliography  Save this article

Energy Embedded in Food Loss Management and in the Production of Uneaten Food: Seeking a Sustainable Pathway

Author

Listed:
  • Daniel Hoehn

    (Department of Chemical and Biomolecular Engineering, University of Cantabria, Avda. De los Castros s/n, 39005 Santander, Spain)

  • María Margallo

    (Department of Chemical and Biomolecular Engineering, University of Cantabria, Avda. De los Castros s/n, 39005 Santander, Spain)

  • Jara Laso

    (Department of Chemical and Biomolecular Engineering, University of Cantabria, Avda. De los Castros s/n, 39005 Santander, Spain)

  • Isabel García-Herrero

    (Department of Chemical and Biomolecular Engineering, University of Cantabria, Avda. De los Castros s/n, 39005 Santander, Spain)

  • Alba Bala

    (UNESCO Chair in Life Cycle and Climate Change ESCI-UPF, Universitat Pompeu Fabra, Pg. Pujades 1, 08003 Barcelona, Spain)

  • Pere Fullana-i-Palmer

    (UNESCO Chair in Life Cycle and Climate Change ESCI-UPF, Universitat Pompeu Fabra, Pg. Pujades 1, 08003 Barcelona, Spain)

  • Angel Irabien

    (Department of Chemical and Biomolecular Engineering, University of Cantabria, Avda. De los Castros s/n, 39005 Santander, Spain)

  • Rubén Aldaco

    (Department of Chemical and Biomolecular Engineering, University of Cantabria, Avda. De los Castros s/n, 39005 Santander, Spain)

Abstract

Recently, important efforts have been made to define food loss management strategies. Most strategies have mainly been focused on mass and energy recovery through mixed food loss in centralised recovery models. This work aims to highlight the need to address a decentralised food loss management, in order to manage the different fractions and on each of the different stages of the food supply chain. For this purpose, an energy flow analysis is made, through the calculation of the primary energy demand of four stages and 11 food categories of the Spanish food supply chain in 2015. The energy efficiency assessment is conducted under a resource use perspective, using the energy return on investment (EROI) ratio, and a circular economy perspective, developing an Energy return on investment – Circular economy index (EROIce), based on a food waste-to-energy-to-food approach. Results suggest that the embodied energy loss consist of 17% of the total primary energy demand, and related to the food categories, the vegetarian diet appears to be the most efficient, followed by the pescetarian diet. Comparing food energy loss values with the estimated energy provided for one consumer, it is highlighted the fact that the food energy loss generated by two to three persons amounts to one person's total daily intake. Moreover, cereals is the category responsible for the highest percentage on the total food energy loss (44%); following by meat, fish and seafood and vegetables. When the results of food energy loss and embodied energy loss are related, it is observed that categories such as meat and fish and seafood have a very high primary energy demand to produce less food, besides that the parts of the food supply chain with more energy recovery potential are the beginning and the end. Finally, the EROIce analysis shows that in the categories of meat, fish and seafood and cereals, anaerobic digestion and composting is the best option for energy recovery. From the results, it is discussed the possibility to developed local digesters at the beginning and end of the food supply chain, as well as to developed double digesters installations for hydrogen recovery from cereals loss, and methane recovery from mixed food loss.

Suggested Citation

  • Daniel Hoehn & María Margallo & Jara Laso & Isabel García-Herrero & Alba Bala & Pere Fullana-i-Palmer & Angel Irabien & Rubén Aldaco, 2019. "Energy Embedded in Food Loss Management and in the Production of Uneaten Food: Seeking a Sustainable Pathway," Energies, MDPI, vol. 12(4), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:767-:d:208947
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/4/767/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/4/767/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Raha, Debadayita & Mahanta, Pinakeswar & Clarke, Michèle L., 2014. "The implementation of decentralised biogas plants in Assam, NE India: The impact and effectiveness of the National Biogas and Manure Management Programme," Energy Policy, Elsevier, vol. 68(C), pages 80-91.
    2. Mads V. Markussen & Hanne Østergård, 2013. "Energy Analysis of the Danish Food Production System: Food-EROI and Fossil Fuel Dependency," Energies, MDPI, vol. 6(8), pages 1-17, August.
    3. Aditi David & Tanvi Govil & Abhilash Kumar Tripathi & Julie McGeary & Kylie Farrar & Rajesh Kumar Sani, 2018. "Thermophilic Anaerobic Digestion: Enhanced and Sustainable Methane Production from Co-Digestion of Food and Lignocellulosic Wastes," Energies, MDPI, vol. 11(8), pages 1-13, August.
    4. Berners-Lee, M. & Hoolohan, C. & Cammack, H. & Hewitt, C.N., 2012. "The relative greenhouse gas impacts of realistic dietary choices," Energy Policy, Elsevier, vol. 43(C), pages 184-190.
    5. Yevgeniya Arushanyan & Anna Björklund & Ola Eriksson & Göran Finnveden & Maria Ljunggren Söderman & Jan-Olov Sundqvist & Åsa Stenmarck, 2017. "Environmental Assessment of Possible Future Waste Management Scenarios," Energies, MDPI, vol. 10(2), pages 1-27, February.
    6. Jara Laso & Daniel Hoehn & María Margallo & Isabel García-Herrero & Laura Batlle-Bayer & Alba Bala & Pere Fullana-i-Palmer & Ian Vázquez-Rowe & Angel Irabien & Rubén Aldaco, 2018. "Assessing Energy and Environmental Efficiency of the Spanish Agri-Food System Using the LCA/DEA Methodology," Energies, MDPI, vol. 11(12), pages 1-18, December.
    7. Garcia-Herrero, I. & Hoehn, D. & Margallo, M. & Laso, J. & Bala, A. & Batlle-Bayer, L. & Fullana, P. & Vazquez-Rowe, I. & Gonzalez, M.J. & Durá, M.J. & Sarabia, C. & Abajas, R. & Amo-Setien, F.J. & Qu, 2018. "On the estimation of potential food waste reduction to support sustainable production and consumption policies," Food Policy, Elsevier, vol. 80(C), pages 24-38.
    8. Carlsson-Kanyama, Annika & Ekstrom, Marianne Pipping & Shanahan, Helena, 2003. "Food and life cycle energy inputs: consequences of diet and ways to increase efficiency," Ecological Economics, Elsevier, vol. 44(2-3), pages 293-307, March.
    9. Claudinei De Souza Guimarães & David Rodrigues da Silva Maia & Eduardo Gonçalves Serra, 2018. "Construction of Biodigesters to Optimize the Production of Biogas from Anaerobic Co-Digestion of Food Waste and Sewage," Energies, MDPI, vol. 11(4), pages 1-10, April.
    10. Matteo Vittuari & Fabio De Menna & Marco Pagani, 2016. "The Hidden Burden of Food Waste: The Double Energy Waste in Italy," Energies, MDPI, vol. 9(8), pages 1-24, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Efthymios Rodias & Eirini Aivazidou & Charisios Achillas & Dimitrios Aidonis & Dionysis Bochtis, 2020. "Water-Energy-Nutrients Synergies in the Agrifood Sector: A Circular Economy Framework," Energies, MDPI, vol. 14(1), pages 1-17, December.
    2. Jara Laso & Isabel García-Herrero & María Margallo & Alba Bala & Pere Fullana-i-Palmer & Angel Irabien & Rubén Aldaco, 2019. "LCA-Based Comparison of Two Organic Fraction Municipal Solid Waste Collection Systems in Historical Centres in Spain," Energies, MDPI, vol. 12(7), pages 1-18, April.
    3. Teodora Stillitano & Emanuele Spada & Nathalie Iofrida & Giacomo Falcone & Anna Irene De Luca, 2021. "Sustainable Agri-Food Processes and Circular Economy Pathways in a Life Cycle Perspective: State of the Art of Applicative Research," Sustainability, MDPI, vol. 13(5), pages 1-28, February.
    4. Phemelo Tamasiga & Taghi Miri & Helen Onyeaka & Abarasi Hart, 2022. "Food Waste and Circular Economy: Challenges and Opportunities," Sustainability, MDPI, vol. 14(16), pages 1-30, August.
    5. Laura Brenes-Peralta & María F. Jiménez-Morales & Rooel Campos-Rodríguez & Fabio De Menna & Matteo Vittuari, 2020. "Decision-Making Process in the Circular Economy: A Case Study on University Food Waste-to-Energy Actions in Latin America," Energies, MDPI, vol. 13(9), pages 1-25, May.
    6. Francesco Calise & Maria Vicidomini & Mário Costa & Qiuwang Wang & Poul Alberg Østergaard & Neven Duić, 2019. "Toward an Efficient and Sustainable Use of Energy in Industries and Cities," Energies, MDPI, vol. 12(16), pages 1-28, August.
    7. Bohuslava Mihalčová & Antonín Korauš & Olha Prokopenko & Jozefína Hvastová & Magdaléna Freňáková & Peter Gallo & Beáta Balogová, 2021. "Effective Management Tools for Solving the Problem of Poverty in Relation to Food Waste in Context of Integrated Management of Energy," Energies, MDPI, vol. 14(14), pages 1-18, July.
    8. Daniel Hoehn & Jara Laso & María Margallo & Israel Ruiz-Salmón & Francisco José Amo-Setién & Rebeca Abajas-Bustillo & Carmen Sarabia & Ainoa Quiñones & Ian Vázquez-Rowe & Alba Bala & Laura Batlle-Baye, 2021. "Introducing a Degrowth Approach to the Circular Economy Policies of Food Production, and Food Loss and Waste Management: Towards a Circular Bioeconomy," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    9. Do, Quynh & Ramudhin, Amar & Colicchia, Claudia & Creazza, Alessandro & Li, Dong, 2021. "A systematic review of research on food loss and waste prevention and management for the circular economy," International Journal of Production Economics, Elsevier, vol. 239(C).
    10. Bedoić, Robert & Špehar, Ana & Puljko, Josip & Čuček, Lidija & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2020. "Opportunities and challenges: Experimental and kinetic analysis of anaerobic co-digestion of food waste and rendering industry streams for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    11. Jara Laso & Cristina Campos & Ana Fernández-Ríos & Daniel Hoehn & Andrea del Río & Israel Ruiz-Salmón & Jorge Cristobal & Ainoa Quiñones & Francisco José Amo-Setién & María del Carmen Ortego & Sergio , 2020. "Looking for Answers to Food Loss and Waste Management in Spain from a Holistic Nutritional and Economic Approach," Sustainability, MDPI, vol. 13(1), pages 1-24, December.
    12. Daniel Hoehn & María Margallo & Jara Laso & Israel Ruiz-Salmón & Laura Batlle-Bayer & Alba Bala & Pere Fullana-i-Palmer & Rubén Aldaco, 2021. "A Novel Composite Index for the Development of Decentralized Food Production, Food Loss, and Waste Management Policies: A Water-Climate-Food Nexus Approach," Sustainability, MDPI, vol. 13(5), pages 1-14, March.
    13. Jing Li & Wei Li & Lei Wang & Baihui Jin, 2021. "Environmental and Cost Impacts of Food Waste in University Canteen from a Life Cycle Perspective," Energies, MDPI, vol. 14(18), pages 1-16, September.
    14. Daniel Hoehn & María Margallo & Jara Laso & Ana Fernández-Ríos & Israel Ruiz-Salmón & Rubén Aldaco, 2022. "Energy Systems in the Food Supply Chain and in the Food Loss and Waste Valorization Processes: A Systematic Review," Energies, MDPI, vol. 15(6), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jara Laso & Cristina Campos & Ana Fernández-Ríos & Daniel Hoehn & Andrea del Río & Israel Ruiz-Salmón & Jorge Cristobal & Ainoa Quiñones & Francisco José Amo-Setién & María del Carmen Ortego & Sergio , 2020. "Looking for Answers to Food Loss and Waste Management in Spain from a Holistic Nutritional and Economic Approach," Sustainability, MDPI, vol. 13(1), pages 1-24, December.
    2. Jara Laso & Isabel García-Herrero & María Margallo & Alba Bala & Pere Fullana-i-Palmer & Angel Irabien & Rubén Aldaco, 2019. "LCA-Based Comparison of Two Organic Fraction Municipal Solid Waste Collection Systems in Historical Centres in Spain," Energies, MDPI, vol. 12(7), pages 1-18, April.
    3. Bartłomiej Bajan & Joanna Łukasiewicz & Agnieszka Poczta-Wajda & Walenty Poczta, 2021. "Edible Energy Production and Energy Return on Investment—Long-Term Analysis of Global Changes," Energies, MDPI, vol. 14(4), pages 1-16, February.
    4. Daniel Hoehn & María Margallo & Jara Laso & Ana Fernández-Ríos & Israel Ruiz-Salmón & Rubén Aldaco, 2022. "Energy Systems in the Food Supply Chain and in the Food Loss and Waste Valorization Processes: A Systematic Review," Energies, MDPI, vol. 15(6), pages 1-15, March.
    5. Bartłomiej Bajan & Aldona Mrówczyńska-Kamińska & Walenty Poczta, 2020. "Economic Energy Efficiency of Food Production Systems," Energies, MDPI, vol. 13(21), pages 1-16, November.
    6. Valeria De Laurentiis & Dexter V.L. Hunt & Christopher D.F. Rogers, 2016. "Overcoming Food Security Challenges within an Energy/Water/Food Nexus (EWFN) Approach," Sustainability, MDPI, vol. 8(1), pages 1-23, January.
    7. Jara Laso & Daniel Hoehn & María Margallo & Isabel García-Herrero & Laura Batlle-Bayer & Alba Bala & Pere Fullana-i-Palmer & Ian Vázquez-Rowe & Angel Irabien & Rubén Aldaco, 2018. "Assessing Energy and Environmental Efficiency of the Spanish Agri-Food System Using the LCA/DEA Methodology," Energies, MDPI, vol. 11(12), pages 1-18, December.
    8. Hoolohan, C. & Berners-Lee, M. & McKinstry-West, J. & Hewitt, C.N., 2013. "Mitigating the greenhouse gas emissions embodied in food through realistic consumer choices," Energy Policy, Elsevier, vol. 63(C), pages 1065-1074.
    9. Yue, Shen & Munir, Irfan Ullah & Hyder, Shabir & Nassani, Abdelmohsen A. & Qazi Abro, Muhammad Moinuddin & Zaman, Khalid, 2020. "Sustainable food production, forest biodiversity and mineral pricing: Interconnected global issues," Resources Policy, Elsevier, vol. 65(C).
    10. Zeke Marshall & Paul E. Brockway, 2020. "A Net Energy Analysis of the Global Agriculture, Aquaculture, Fishing and Forestry System," Biophysical Economics and Resource Quality, Springer, vol. 5(2), pages 1-27, June.
    11. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    12. Chitnis, Mona & Sorrell, Steve & Druckman, Angela & Firth, Steven K. & Jackson, Tim, 2014. "Who rebounds most? Estimating direct and indirect rebound effects for different UK socioeconomic groups," Ecological Economics, Elsevier, vol. 106(C), pages 12-32.
    13. Martina Schäfer & Melanie Jaeger-Erben & Aguinaldo Santos, 2011. "Leapfrogging to Sustainable Consumption? An Explorative Survey of Consumption Habits and Orientations in Southern Brazil," Journal of Consumer Policy, Springer, vol. 34(1), pages 175-196, March.
    14. Danilo Bertoni & Daniele Cavicchioli & Franco Donzelli & Giovanni Ferrazzi & Dario G. Frisio & Roberto Pretolani & Elena Claire Ricci & Vera Ventura, 2018. "Recent Contributions of Agricultural Economics Research in the Field of Sustainable Development," Agriculture, MDPI, vol. 8(12), pages 1-20, December.
    15. Sovacool, Benjamin K. & Bazilian, Morgan & Griffiths, Steve & Kim, Jinsoo & Foley, Aoife & Rooney, David, 2021. "Decarbonizing the food and beverages industry: A critical and systematic review of developments, sociotechnical systems and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    16. David Bryngelsson & Fredrik Hedenus & Daniel J. A. Johansson & Christian Azar & Stefan Wirsenius, 2017. "How Do Dietary Choices Influence the Energy-System Cost of Stabilizing the Climate?," Energies, MDPI, vol. 10(2), pages 1-13, February.
    17. Morena Bruno & Marianne Thomsen & Federico Maria Pulselli & Nicoletta Patrizi & Michele Marini & Dario Caro, 2019. "The carbon footprint of Danish diets," Climatic Change, Springer, vol. 156(4), pages 489-507, October.
    18. Daniel Hoehn & María Margallo & Jara Laso & Israel Ruiz-Salmón & Laura Batlle-Bayer & Alba Bala & Pere Fullana-i-Palmer & Rubén Aldaco, 2021. "A Novel Composite Index for the Development of Decentralized Food Production, Food Loss, and Waste Management Policies: A Water-Climate-Food Nexus Approach," Sustainability, MDPI, vol. 13(5), pages 1-14, March.
    19. Patricia Eustachio Colombo & Emma Patterson & Liselotte Schäfer Elinder & Anna Karin Lindroos & Ulf Sonesson & Nicole Darmon & Alexandr Parlesak, 2019. "Optimizing School Food Supply: Integrating Environmental, Health, Economic, and Cultural Dimensions of Diet Sustainability with Linear Programming," IJERPH, MDPI, vol. 16(17), pages 1-18, August.
    20. Linnea Laestadius & Roni Neff & Colleen Barry & Shannon Frattaroli, 2013. "Meat consumption and climate change: the role of non-governmental organizations," Climatic Change, Springer, vol. 120(1), pages 25-38, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:767-:d:208947. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.