IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p2937-d178720.html
   My bibliography  Save this article

Gas–Liquid Two-Phase Upward Flow through a Vertical Pipe: Influence of Pressure Drop on the Measurement of Fluid Flow Rate

Author

Listed:
  • Tarek A. Ganat

    (Department of Petroleum Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia)

  • Meftah Hrairi

    (Department of Mechanical Engineering, International Islamic University Malaysia, P.O. Box 10, Kuala Lumpur 50728, Malaysia)

Abstract

The accurate estimation of pressure drop during multiphase fluid flow in vertical pipes has been widely recognized as a critical problem in oil wells completion design. The flow of fluids through the vertical tubing strings causes great losses of energy through friction, where the value of this loss depends on fluid flow viscosity and the size of the conduit. A number of friction factor correlations, which have acceptably accurate results in large diameter pipes, are significantly in error when applied to smaller diameter pipes. Normally, the pressure loss occurs due to friction between the fluid flow and the pipe walls. The estimation of the pressure gradients during the multiphase flow of fluids is very complex due to the variation of many fluid parameters along the vertical pipe. Other complications relate to the numerous flow regimes and the variabilities of the fluid interfaces involved. Accordingly, knowledge about pressure drops and friction factors is required to determine the fluid flow rate of the oil wells. This paper describes the influences of the pressure drop on the measurement of the fluid flow by estimating the friction factor using different empirical friction correlations. Field experimental work was performed at the well site to predict the fluid flow rate of 48 electrical submersible pump (ESP) oil wells, using the newly developed mathematical model. Using Darcy and Colebrook friction factor correlations, the results show high average relative errors, exceeding ±18.0%, in predicted liquid flow rate (oil and water). In gas rate, more than 77% of the data exceeded ±10.0% relative error to the predicted gas rate. For the Blasius correlation, the results showed the predicted liquid flow rate was in agreement with measured values, where the average relative error was less than ±18.0%, and for the gas rate, 68% of the data showed more than ±10% relative error.

Suggested Citation

  • Tarek A. Ganat & Meftah Hrairi, 2018. "Gas–Liquid Two-Phase Upward Flow through a Vertical Pipe: Influence of Pressure Drop on the Measurement of Fluid Flow Rate," Energies, MDPI, vol. 11(11), pages 1-23, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2937-:d:178720
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/2937/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/2937/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Artur J. Jaworski, 2019. "Special Issue “Fluid Flow and Heat Transfer”," Energies, MDPI, vol. 12(16), pages 1-4, August.
    2. Grzegorz Ligus & Daniel Zając & Maciej Masiukiewicz & Stanisław Anweiler, 2019. "A New Method of Selecting the Airlift Pump Optimum Efficiency at Low Submergence Ratios with the Use of Image Analysis," Energies, MDPI, vol. 12(4), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2937-:d:178720. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.