IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i4p609-d206092.html
   My bibliography  Save this article

Combustion and Emission Enhancement of a Spark Ignition Two-Stroke Cycle Engine Utilizing Internal and External Exhaust Gas Recirculation Approach at Low-Load Operation

Author

Listed:
  • Amin Mahmoudzadeh Andwari

    (Centre for Advanced Powertrain and Fuels Research (CAPF), Department of Mechanical, Aerospace and Civil Engineering, Brunel University London, London UB8 3PH, UK
    Vehicle, Fuel and Environment Research Institute (VFERI), School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran 1439956191, Iran
    Automotive Development Centre (ADC), School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru)

  • Apostolos Pesyridis

    (Centre for Advanced Powertrain and Fuels Research (CAPF), Department of Mechanical, Aerospace and Civil Engineering, Brunel University London, London UB8 3PH, UK)

  • Vahid Esfahanian

    (Vehicle, Fuel and Environment Research Institute (VFERI), School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran 1439956191, Iran)

  • Mohd Farid Muhamad Said

    (Automotive Development Centre (ADC), School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru)

Abstract

Two-stroke cycle engines have always been prominent due to their distinctive advantage incorporating high power-to-weight ratio, however the drawbacks are poor combustion efficiency, fuel short-circuiting and excessive emission of uHC and CO. These problems are apparent at low-load and speed regions and are the major obstacle to their global acceptance. The deficiencies can be addressed by increasing the in-cylinder average charge temperature employing Exhaust Gas Recirculation (EGR). An experimental study is conducted to investigate the influence of utilizing EGR techniques, including Internal and External EGR, on combustion misfiring occurrence, combustion stability and exhaust emissions using a single cylinder two-stroke SI engine at idling, low and mid-load conditions. From the results, it is observed since the average in-cylinder charge temperature is increased, due to utilizing EGRs, engine’s low and mid-load irregular combustions (misfire) and exhaust emissions are remarkably supressed and almost all of misfire cycles eliminated depending on the percentage of EGRs. In terms of combustion stability, it is agreed in general the application of EGRs improves the cyclic variation of IMEP, P max and CA10 compared to conventional operation. However, applying Ex-EGR compared to In-EGR will deteriorate cyclic variability of IMEP and CA10.

Suggested Citation

  • Amin Mahmoudzadeh Andwari & Apostolos Pesyridis & Vahid Esfahanian & Mohd Farid Muhamad Said, 2019. "Combustion and Emission Enhancement of a Spark Ignition Two-Stroke Cycle Engine Utilizing Internal and External Exhaust Gas Recirculation Approach at Low-Load Operation," Energies, MDPI, vol. 12(4), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:609-:d:206092
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/4/609/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/4/609/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andwari, Amin Mahmoudzadeh & Aziz, Azhar Abdul & Said, Mohd Farid Muhamad & Latiff, Zulkarnain Abdul, 2014. "Experimental investigation of the influence of internal and external EGR on the combustion characteristics of a controlled auto-ignition two-stroke cycle engine," Applied Energy, Elsevier, vol. 134(C), pages 1-10.
    2. Karvountzis-Kontakiotis, Apostolos & Andwari, Amin Mahmoudzadeh & Pesyridis, Apostolos & Russo, Salvatore & Tuccillo, Raffaele & Esfahanian, Vahid, 2018. "Application of Micro Gas Turbine in Range-Extended Electric Vehicles," Energy, Elsevier, vol. 147(C), pages 351-361.
    3. Amin Mahmoudzadeh Andwari & Apostolos Pesiridis & Vahid Esfahanian & Ali Salavati-Zadeh & Apostolos Karvountzis-Kontakiotis & Vishal Muralidharan, 2017. "A Comparative Study of the Effect of Turbocompounding and ORC Waste Heat Recovery Systems on the Performance of a Turbocharged Heavy-Duty Diesel Engine," Energies, MDPI, vol. 10(8), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gharehghani, Ayat & Salahi, Mohammad Mahdi & Andwari, Amin Mahmoudzadeh & Mikulski, Maciej & Könnö, Juho, 2023. "Reactivity enhancement of natural gas/diesel RCCI engine by adding ozone species," Energy, Elsevier, vol. 274(C).
    2. Amin Mahmoudzadeh Andwari & Apostolos Pesyridis & Vahid Esfahanian & Ali Salavati-Zadeh & Alireza Hajialimohammadi, 2019. "Modelling and Evaluation of Waste Heat Recovery Systems in the Case of a Heavy-Duty Diesel Engine," Energies, MDPI, vol. 12(7), pages 1-26, April.
    3. Clemens Gößnitzer & Shawn Givler, 2021. "A New Method to Determine the Impact of Individual Field Quantities on Cycle-to-Cycle Variations in a Spark-Ignited Gas Engine," Energies, MDPI, vol. 14(14), pages 1-14, July.
    4. Jingrui Li & Jietuo Wang & Teng Liu & Jingjin Dong & Bo Liu & Chaohui Wu & Ying Ye & Hu Wang & Haifeng Liu, 2019. "An Investigation of the Influence of Gas Injection Rate Shape on High-Pressure Direct-Injection Natural Gas Marine Engines," Energies, MDPI, vol. 12(13), pages 1-18, July.
    5. Menaz Ahamed & Apostolos Pesyridis & Jabraeil Ahbabi Saray & Amin Mahmoudzadeh Andwari & Ayat Gharehghani & Srithar Rajoo, 2023. "Comparative Assessment of sCO2 Cycles, Optimal ORC, and Thermoelectric Generators for Exhaust Waste Heat Recovery Applications from Heavy-Duty Diesel Engines," Energies, MDPI, vol. 16(11), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amin Mahmoudzadeh Andwari & Apostolos Pesyridis & Vahid Esfahanian & Ali Salavati-Zadeh & Alireza Hajialimohammadi, 2019. "Modelling and Evaluation of Waste Heat Recovery Systems in the Case of a Heavy-Duty Diesel Engine," Energies, MDPI, vol. 12(7), pages 1-26, April.
    2. Karvountzis-Kontakiotis, Apostolos & Andwari, Amin Mahmoudzadeh & Pesyridis, Apostolos & Russo, Salvatore & Tuccillo, Raffaele & Esfahanian, Vahid, 2018. "Application of Micro Gas Turbine in Range-Extended Electric Vehicles," Energy, Elsevier, vol. 147(C), pages 351-361.
    3. Masurier, J.-B. & Foucher, F. & Dayma, G. & Dagaut, P., 2015. "Ozone applied to the homogeneous charge compression ignition engine to control alcohol fuels combustion," Applied Energy, Elsevier, vol. 160(C), pages 566-580.
    4. Ezzat, M.F. & Dincer, I., 2019. "Development and exergetic assessment of a new hybrid vehicle incorporating gas turbine as powering option," Energy, Elsevier, vol. 170(C), pages 112-119.
    5. Apostolos Pesyridis & Muhammad Suleman Asif & Sadegh Mehranfar & Amin Mahmoudzadeh Andwari & Ayat Gharehghani & Thanos Megaritis, 2023. "Design of the Organic Rankine Cycle for High-Efficiency Diesel Engines in Marine Applications," Energies, MDPI, vol. 16(11), pages 1-17, May.
    6. Roberta De Robbio, 2023. "Micro Gas Turbine Role in Distributed Generation with Renewable Energy Sources," Energies, MDPI, vol. 16(2), pages 1-37, January.
    7. García, Antonio & Monsalve-Serrano, Javier & Martinez-Boggio, Santiago & Gaillard, Patrick, 2021. "Emissions reduction by using e-components in 48 V mild hybrid trucks under dual-mode dual-fuel combustion," Applied Energy, Elsevier, vol. 299(C).
    8. Yan, Yunfei & Wu, Gange & Huang, Weipeng & Zhang, Li & Li, Lixian & Yang, Zhongqing, 2019. "Numerical comparison study of methane catalytic combustion characteristic between newly proposed opposed counter-flow micro-combustor and the conventional ones," Energy, Elsevier, vol. 170(C), pages 403-410.
    9. Krishna, Addepalli S. & Mallikarjuna, J.M. & Kumar, Davinder, 2016. "Effect of engine parameters on in-cylinder flows in a two-stroke gasoline direct injection engine," Applied Energy, Elsevier, vol. 176(C), pages 282-294.
    10. Evangelos G. Giakoumis, 2017. "Diesel and Spark Ignition Engines Emissions and After-Treatment Control: Research and Advancements," Energies, MDPI, vol. 10(11), pages 1-4, November.
    11. Javanshir, Alireza & Sarunac, Nenad & Razzaghpanah, Zahra, 2018. "Thermodynamic analysis and optimization of single and combined power cycles for concentrated solar power applications," Energy, Elsevier, vol. 157(C), pages 65-75.
    12. Ren, Guizhou & Wang, Jinzhong & Chen, Changlei & Wang, Haoran, 2021. "A variable-voltage ultra-capacitor/battery hybrid power source for extended range electric vehicle," Energy, Elsevier, vol. 231(C).
    13. Qian, Yejian & Gong, Zhen & Zhuang, Yuan & Wang, Chunmei & Zhao, Peng, 2018. "Mechanism study of scavenging process and its effect on combustion characteristics in a boosted GDI engine," Energy, Elsevier, vol. 165(PA), pages 246-266.
    14. Nguyen Xuan Khoa & Ocktaeck Lim, 2022. "A Review of the External and Internal Residual Exhaust Gas in the Internal Combustion Engine," Energies, MDPI, vol. 15(3), pages 1-21, February.
    15. Karvountzis-Kontakiotis, Apostolos & Vafamehr, Hassan & Cairns, Alasdair & Peckham, Mark, 2018. "Study on pollutants formation under knocking combustion conditions using an optical single cylinder SI research engine," Energy, Elsevier, vol. 158(C), pages 899-910.
    16. Alireza Javanshir & Nenad Sarunac & Zahra Razzaghpanah, 2017. "Thermodynamic Analysis of ORC and Its Application for Waste Heat Recovery," Sustainability, MDPI, vol. 9(11), pages 1-26, October.
    17. Xu, Bin & Rathod, Dhruvang & Yebi, Adamu & Filipi, Zoran & Onori, Simona & Hoffman, Mark, 2019. "A comprehensive review of organic rankine cycle waste heat recovery systems in heavy-duty diesel engine applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 145-170.
    18. Gentz, Gerald & Gholamisheeri, Masumeh & Toulson, Elisa, 2017. "A study of a turbulent jet ignition system fueled with iso-octane: Pressure trace analysis and combustion visualization," Applied Energy, Elsevier, vol. 189(C), pages 385-394.
    19. Dalla Nora, Macklini & Zhao, Hua, 2015. "High load performance and combustion analysis of a four-valve direct injection gasoline engine running in the two-stroke cycle," Applied Energy, Elsevier, vol. 159(C), pages 117-131.
    20. Serrano, José Ramón & García, Antonio & Monsalve-Serrano, Javier & Martínez-Boggio, Santiago, 2021. "High efficiency two stroke opposed piston engine for plug-in hybrid electric vehicle applications: Evaluation under homologation and real driving conditions," Applied Energy, Elsevier, vol. 282(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:609-:d:206092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.