IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i3p370-d200549.html
   My bibliography  Save this article

Object-Oriented Usability Indices for Multi-Objective Demand Side Management Using Teaching-Learning Based Optimization

Author

Listed:
  • Mayank Singh

    (Department of Electrical and Electronics Engineering, Birla Institute of Technology Mesra, Ranchi 835215, India)

  • Rakesh Chandra Jha

    (Department of Electrical and Electronics Engineering, Birla Institute of Technology Mesra, Ranchi 835215, India)

Abstract

This paper proposes Object-Oriented Usability Indices (OOUI) for multi-objective Demand Side Management (DSM). These indices quantify the achievements of multi-objective DSM in a power network. DSM can be considered as a method adopted by utilities to shed some load during peak load hours. Usually, there are service contracts, and the curtailments or dimming of load are automatically done by service providers based on contract provisions. This paper formulates three indices, namely peak power shaving, renewable energy integration, and an overall usability index. The first two indices indicate the amount of peak load shaving and integration of renewable energy, while the third one combines the impact of both indices and quantifies the overall benefit achieved through DSM. The application of the proposed indices is presented through simulation performed in a grid-tied microgrid environment for a multi-objective DSM formulation. The adopted microgrid structure consists of three units of diesel generators and two renewable energy sources. Simulation has been done using MATLAB software. Teaching-Learning-Based Optimization (TLBO) is adopted as the optimization tool due to its simplicity and independency of algorithm-specific control parameters. Five different cases of renewable energy availability with results validate the efficiency of the proposed approach. The results indicate the usefulness in determining the suitable condition regarding DSM application.

Suggested Citation

  • Mayank Singh & Rakesh Chandra Jha, 2019. "Object-Oriented Usability Indices for Multi-Objective Demand Side Management Using Teaching-Learning Based Optimization," Energies, MDPI, vol. 12(3), pages 1-25, January.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:370-:d:200549
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/3/370/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/3/370/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Songli Fan & Qian Ai & Longjian Piao, 2018. "Hierarchical Energy Management of Microgrids including Storage and Demand Response," Energies, MDPI, vol. 11(5), pages 1-23, May.
    2. Nwulu, Nnamdi I. & Xia, Xiaohua, 2017. "Optimal dispatch for a microgrid incorporating renewables and demand response," Renewable Energy, Elsevier, vol. 101(C), pages 16-28.
    3. Rajanna, S. & Saini, R.P., 2016. "Employing demand side management for selection of suitable scenario-wise isolated integrated renewal energy models in an Indian remote rural area," Renewable Energy, Elsevier, vol. 99(C), pages 1161-1180.
    4. Moses Amoasi Acquah & Daisuke Kodaira & Sekyung Han, 2018. "Real-Time Demand Side Management Algorithm Using Stochastic Optimization," Energies, MDPI, vol. 11(5), pages 1-14, May.
    5. Hee-Jun Cha & Dong-Jun Won & Sang-Hyuk Kim & Il-Yop Chung & Byung-Moon Han, 2015. "Multi-Agent System-Based Microgrid Operation Strategy for Demand Response," Energies, MDPI, vol. 8(12), pages 1-15, December.
    6. Hussein Jumma Jabir & Jiashen Teh & Dahaman Ishak & Hamza Abunima, 2018. "Impacts of Demand-Side Management on Electrical Power Systems: A Review," Energies, MDPI, vol. 11(5), pages 1-19, April.
    7. Moghaddam, Amjad Anvari & Seifi, Alireza & Niknam, Taher & Alizadeh Pahlavani, Mohammad Reza, 2011. "Multi-objective operation management of a renewable MG (micro-grid) with back-up micro-turbine/fuel cell/battery hybrid power source," Energy, Elsevier, vol. 36(11), pages 6490-6507.
    8. Al-Alawi, Ali & Islam, S.M, 2004. "Demand side management for remote area power supply systems incorporating solar irradiance model," Renewable Energy, Elsevier, vol. 29(13), pages 2027-2036.
    9. Kallel, Randa & Boukettaya, Ghada & Krichen, Lotfi, 2015. "Demand side management of household appliances in stand-alone hybrid photovoltaic system," Renewable Energy, Elsevier, vol. 81(C), pages 123-135.
    10. Kotur, Dimitrije & Đurišić, Željko, 2017. "Optimal spatial and temporal demand side management in a power system comprising renewable energy sources," Renewable Energy, Elsevier, vol. 108(C), pages 533-547.
    11. Anh-Duc Nguyen & Van-Hai Bui & Akhtar Hussain & Duc-Huy Nguyen & Hak-Man Kim, 2018. "Impact of Demand Response Programs on Optimal Operation of Multi-Microgrid System," Energies, MDPI, vol. 11(6), pages 1-18, June.
    12. Simona-Vasilica Oprea & Adela Bâra & Adriana Reveiu, 2018. "Informatics Solution for Energy Efficiency Improvement and Consumption Management of Householders," Energies, MDPI, vol. 11(1), pages 1-31, January.
    13. Alham, M.H. & Elshahed, M. & Ibrahim, Doaa Khalil & Abo El Zahab, Essam El Din, 2016. "A dynamic economic emission dispatch considering wind power uncertainty incorporating energy storage system and demand side management," Renewable Energy, Elsevier, vol. 96(PA), pages 800-811.
    14. Muqaddas Naz & Zafar Iqbal & Nadeem Javaid & Zahoor Ali Khan & Wadood Abdul & Ahmad Almogren & Atif Alamri, 2018. "Efficient Power Scheduling in Smart Homes Using Hybrid Grey Wolf Differential Evolution Optimization Technique with Real Time and Critical Peak Pricing Schemes," Energies, MDPI, vol. 11(2), pages 1-25, February.
    15. Zuoyu Liu & Weimin Zheng & Feng Qi & Lei Wang & Bo Zou & Fushuan Wen & You Xue, 2018. "Optimal Dispatch of a Virtual Power Plant Considering Demand Response and Carbon Trading," Energies, MDPI, vol. 11(6), pages 1-19, June.
    16. Hussein Jumma Jabir & Jiashen Teh & Dahaman Ishak & Hamza Abunima, 2018. "Impact of Demand-Side Management on the Reliability of Generation Systems," Energies, MDPI, vol. 11(8), pages 1-20, August.
    17. Neves, Diana & Brito, Miguel C. & Silva, Carlos A., 2016. "Impact of solar and wind forecast uncertainties on demand response of isolated microgrids," Renewable Energy, Elsevier, vol. 87(P2), pages 1003-1015.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Libor Dražan & René Križan & Miroslav Popela, 2021. "Design and Testing of a Low-Tech DEW Generator for Determining Electromagnetic Immunity of Standard Electronic Circuits," Energies, MDPI, vol. 14(11), pages 1-15, May.
    2. Guoying Lin & Yuyao Yang & Feng Pan & Sijian Zhang & Fen Wang & Shuai Fan, 2019. "An Optimal Energy-Saving Strategy for Home Energy Management Systems with Bounded Customer Rationality," Future Internet, MDPI, vol. 11(4), pages 1-16, April.
    3. Pawan Kumar & Gagandeep Singh Brar & Surjit Singh & Srete Nikolovski & Hamid Reza Baghaee & Zoran Balkić, 2019. "Perspectives and Intensification of Energy Efficiency in Commercial and Residential Buildings Using Strategic Auditing and Demand-Side Management," Energies, MDPI, vol. 12(23), pages 1-31, November.
    4. Batara Surya & Andi Muhibuddin & Seri Suriani & Emil Salim Rasyidi & Baharuddin Baharuddin & Andi Tenri Fitriyah & Herminawaty Abubakar, 2021. "Economic Evaluation, Use of Renewable Energy, and Sustainable Urban Development Mamminasata Metropolitan, Indonesia," Sustainability, MDPI, vol. 13(3), pages 1-45, January.
    5. Pedro Faria & Zita Vale, 2019. "Distributed Energy Resources Management 2018," Energies, MDPI, vol. 13(1), pages 1-4, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyung-Joon Kim & Mun-Kyeom Kim, 2019. "Multi-Objective Based Optimal Energy Management of Grid-Connected Microgrid Considering Advanced Demand Response," Energies, MDPI, vol. 12(21), pages 1-28, October.
    2. Anh-Duc Nguyen & Van-Hai Bui & Akhtar Hussain & Duc-Huy Nguyen & Hak-Man Kim, 2018. "Impact of Demand Response Programs on Optimal Operation of Multi-Microgrid System," Energies, MDPI, vol. 11(6), pages 1-18, June.
    3. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    4. Haddadian, Hossein & Noroozian, Reza, 2017. "Optimal operation of active distribution systems based on microgrid structure," Renewable Energy, Elsevier, vol. 104(C), pages 197-210.
    5. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    6. Zheng, Yingying & Jenkins, Bryan M. & Kornbluth, Kurt & Træholt, Chresten, 2018. "Optimization under uncertainty of a biomass-integrated renewable energy microgrid with energy storage," Renewable Energy, Elsevier, vol. 123(C), pages 204-217.
    7. Yuriy Leonidovich Zhukovskiy & Margarita Sergeevna Kovalchuk & Daria Evgenievna Batueva & Nikita Dmitrievich Senchilo, 2021. "Development of an Algorithm for Regulating the Load Schedule of Educational Institutions Based on the Forecast of Electric Consumption within the Framework of Application of the Demand Response," Sustainability, MDPI, vol. 13(24), pages 1-26, December.
    8. Polamarasetty P Kumar & Ramakrishna S. S. Nuvvula & Md. Alamgir Hossain & SK. A. Shezan & Vishnu Suresh & Michal Jasinski & Radomir Gono & Zbigniew Leonowicz, 2022. "Optimal Operation of an Integrated Hybrid Renewable Energy System with Demand-Side Management in a Rural Context," Energies, MDPI, vol. 15(14), pages 1-50, July.
    9. Eunsung Oh, 2022. "Fair Virtual Energy Storage System Operation for Smart Energy Communities," Sustainability, MDPI, vol. 14(15), pages 1-16, August.
    10. Jiashen Teh, 2018. "Adequacy Assessment of Wind Integrated Generating Systems Incorporating Demand Response and Battery Energy Storage System," Energies, MDPI, vol. 11(10), pages 1-12, October.
    11. Hwang Goh, Hui & Shi, Shuaiwei & Liang, Xue & Zhang, Dongdong & Dai, Wei & Liu, Hui & Yuong Wong, Shen & Agustiono Kurniawan, Tonni & Chen Goh, Kai & Leei Cham, Chin, 2022. "Optimal energy scheduling of grid-connected microgrids with demand side response considering uncertainty," Applied Energy, Elsevier, vol. 327(C).
    12. Ho-Sung Ryu & Mun-Kyeom Kim, 2020. "Combined Economic Emission Dispatch with Environment-Based Demand Response Using WU-ABC Algorithm," Energies, MDPI, vol. 13(23), pages 1-20, December.
    13. Akhtar Hussain & Van-Hai Bui & Hak-Man Kim, 2017. "Impact Analysis of Demand Response Intensity and Energy Storage Size on Operation of Networked Microgrids," Energies, MDPI, vol. 10(7), pages 1-19, June.
    14. Rajavelu Dharani & Madasamy Balasubramonian & Thanikanti Sudhakar Babu & Benedetto Nastasi, 2021. "Load Shifting and Peak Clipping for Reducing Energy Consumption in an Indian University Campus," Energies, MDPI, vol. 14(3), pages 1-16, January.
    15. Kanakadhurga, Dharmaraj & Prabaharan, Natarajan, 2022. "Demand side management in microgrid: A critical review of key issues and recent trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    16. Alessandro Niccolai & Gaia Gianna Taje & Davide Mosca & Fabrizio Trombello & Emanuele Ogliari, 2022. "Industrial Demand-Side Management by Means of Differential Evolution Considering Energy Price and Labour Cost," Mathematics, MDPI, vol. 10(19), pages 1-16, October.
    17. Mohamad, Farihan & Teh, Jiashen & Lai, Ching-Ming, 2021. "Optimum allocation of battery energy storage systems for power grid enhanced with solar energy," Energy, Elsevier, vol. 223(C).
    18. Ali M. Jasim & Basil H. Jasim & Habib Kraiem & Aymen Flah, 2022. "A Multi-Objective Demand/Generation Scheduling Model-Based Microgrid Energy Management System," Sustainability, MDPI, vol. 14(16), pages 1-28, August.
    19. Vasileios M. Laitsos & Dimitrios Bargiotas & Aspassia Daskalopulu & Athanasios Ioannis Arvanitidis & Lefteri H. Tsoukalas, 2021. "An Incentive-Based Implementation of Demand Side Management in Power Systems," Energies, MDPI, vol. 14(23), pages 1-24, November.
    20. Roy, Anthony & Auger, François & Dupriez-Robin, Florian & Bourguet, Salvy & Tran, Quoc Tuan, 2020. "A multi-level Demand-Side Management algorithm for offgrid multi-source systems," Energy, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:370-:d:200549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.