IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i5p1166-d144935.html
   My bibliography  Save this article

Real-Time Demand Side Management Algorithm Using Stochastic Optimization

Author

Listed:
  • Moses Amoasi Acquah

    (Department of Electrical Engineering, Kyungpook National University, 80 Daehak-ro, Sangyeok-dong, Buk-gu, Daegu 41566, Korea)

  • Daisuke Kodaira

    (Department of Electrical Engineering, Kyungpook National University, 80 Daehak-ro, Sangyeok-dong, Buk-gu, Daegu 41566, Korea)

  • Sekyung Han

    (Department of Electrical Engineering, Kyungpook National University, 80 Daehak-ro, Sangyeok-dong, Buk-gu, Daegu 41566, Korea)

Abstract

A demand side management technique is deployed along with battery energy-storage systems (BESS) to lower the electricity cost by mitigating the peak load of a building. Most of the existing methods rely on manual operation of the BESS, or even an elaborate building energy-management system resorting to a deterministic method that is susceptible to unforeseen growth in demand. In this study, we propose a real-time optimal operating strategy for BESS based on density demand forecast and stochastic optimization. This method takes into consideration uncertainties in demand when accounting for an optimal BESS schedule, making it robust compared to the deterministic case. The proposed method is verified and tested against existing algorithms. Data obtained from a real site in South Korea is used for verification and testing. The results show that the proposed method is effective, even for the cases where the forecasted demand deviates from the observed demand.

Suggested Citation

  • Moses Amoasi Acquah & Daisuke Kodaira & Sekyung Han, 2018. "Real-Time Demand Side Management Algorithm Using Stochastic Optimization," Energies, MDPI, vol. 11(5), pages 1-14, May.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1166-:d:144935
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/5/1166/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/5/1166/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chao Lu & Hanchen Xu & Xin Pan & Jie Song, 2014. "Optimal Sizing and Control of Battery Energy Storage System for Peak Load Shaving," Energies, MDPI, vol. 7(12), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mayank Singh & Rakesh Chandra Jha, 2019. "Object-Oriented Usability Indices for Multi-Objective Demand Side Management Using Teaching-Learning Based Optimization," Energies, MDPI, vol. 12(3), pages 1-25, January.
    2. Moses Amoasi Acquah & Sekyung Han, 2019. "Online Building Load Management Control with Plugged-in Electric Vehicles Considering Uncertainties," Energies, MDPI, vol. 12(8), pages 1-19, April.
    3. Jérôme Buire & Frédéric Colas & Jean-Yves Dieulot & Xavier Guillaud, 2019. "Stochastic Optimization of PQ Powers at the Interface between Distribution and Transmission Grids," Energies, MDPI, vol. 12(21), pages 1-16, October.
    4. Gi-Ho Lee & Jae-Young Park & Seung-Jun Ham & Young-Jin Kim, 2020. "Comparative Study on Optimization Solvers for Implementation of a Two-Stage Economic Dispatch Strategy in a Microgrid Energy Management System," Energies, MDPI, vol. 13(5), pages 1-21, March.
    5. van der Meer, Dennis & Wang, Guang Chao & Munkhammar, Joakim, 2021. "An alternative optimal strategy for stochastic model predictive control of a residential battery energy management system with solar photovoltaic," Applied Energy, Elsevier, vol. 283(C).
    6. Jingyeong Park & Jeonghyeon Choi & Hyeondeok Jo & Daisuke Kodaira & Sekyung Han & Moses Amoasi Acquah, 2022. "Life Evaluation of Battery Energy System for Frequency Regulation Using Wear Density Function," Energies, MDPI, vol. 15(21), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Luis Monroy-Morales & Rafael Peña-Alzola & David Campos-Gaona & Olimpo Anaya-Lara, 2022. "Complete Transitions of Hybrid Wind-Diesel Systems with Clutch and Flywheel-Based Energy Storage," Energies, MDPI, vol. 15(19), pages 1-18, September.
    2. Yanjuan Yu & Hongkun Chen & Lei Chen, 2018. "Comparative Study of Electric Energy Storages and Thermal Energy Auxiliaries for Improving Wind Power Integration in the Cogeneration System," Energies, MDPI, vol. 11(2), pages 1-16, January.
    3. Lange, Christopher & Rueß, Alexandra & Nuß, Andreas & Öchsner, Richard & März, Martin, 2020. "Dimensioning battery energy storage systems for peak shaving based on a real-time control algorithm," Applied Energy, Elsevier, vol. 280(C).
    4. Mazhar Abbas & Eung-sang Kim & Seul-ki Kim & Yun-su Kim, 2016. "Comparative Analysis of Battery Behavior with Different Modes of Discharge for Optimal Capacity Sizing and BMS Operation," Energies, MDPI, vol. 9(10), pages 1-19, October.
    5. Abbassi, Abdelkader & Dami, Mohamed Ali & Jemli, Mohamed, 2017. "A statistical approach for hybrid energy storage system sizing based on capacity distributions in an autonomous PV/Wind power generation system," Renewable Energy, Elsevier, vol. 103(C), pages 81-93.
    6. Ng, Rong Wang & Begam, K.M. & Rajkumar, Rajprasad Kumar & Wong, Yee Wan & Chong, Lee Wai, 2022. "A novel dynamic two-stage controller of battery energy storage system for maximum demand reductions," Energy, Elsevier, vol. 248(C).
    7. Jie Song & Xin Pan & Chao Lu & Hanchen Xu, 2017. "A Simulation-Based Optimization Method for Hybrid Frequency Regulation System Configuration," Energies, MDPI, vol. 10(9), pages 1-14, August.
    8. Srete Nikolovski & Hamid Reza Baghaee & Dragan Mlakić, 2018. "ANFIS-Based Peak Power Shaving/Curtailment in Microgrids Including PV Units and BESSs," Energies, MDPI, vol. 11(11), pages 1-23, October.
    9. Feras Alasali & Stephen Haben & Victor Becerra & William Holderbaum, 2017. "Optimal Energy Management and MPC Strategies for Electrified RTG Cranes with Energy Storage Systems," Energies, MDPI, vol. 10(10), pages 1-18, October.
    10. Hinz, Juri & Yee, Jeremy, 2018. "Optimal forward trading and battery control under renewable electricity generation," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 244-254.
    11. Ebrahimi, Armin & Ziabasharhagh, Masoud, 2022. "Introducing a novel control algorithm and scheduling procedure for optimal operation of energy storage systems," Energy, Elsevier, vol. 252(C).
    12. Bhagya Nathali Silva & Murad Khan & Kijun Han, 2020. "Futuristic Sustainable Energy Management in Smart Environments: A Review of Peak Load Shaving and Demand Response Strategies, Challenges, and Opportunities," Sustainability, MDPI, vol. 12(14), pages 1-23, July.
    13. Chua, Kein Huat & Lim, Yun Seng & Morris, Stella, 2017. "A novel fuzzy control algorithm for reducing the peak demands using energy storage system," Energy, Elsevier, vol. 122(C), pages 265-273.
    14. B. V. Rajanna & Malligunta Kiran Kumar, 2021. "Chopper-Based Control Circuit for BESS Integration in Solar PV Grids," Energies, MDPI, vol. 14(6), pages 1-17, March.
    15. Paolo Falbo & Juri Hinz & Piyachat Leelasilapasart & Cristian Pelizzari, 2021. "A Computational Approach to Sequential Decision Optimization in Energy Storage and Trading," JRFM, MDPI, vol. 14(6), pages 1-22, May.
    16. Uddin, Moslem & Romlie, Mohd Fakhizan & Abdullah, Mohd Faris & Abd Halim, Syahirah & Abu Bakar, Ab Halim & Chia Kwang, Tan, 2018. "A review on peak load shaving strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3323-3332.
    17. Reihani, Ehsan & Sepasi, Saeed & Ghorbani, Reza, 2016. "Scheduling of price-sensitive residential storage devices and loads with thermal inertia in distribution grid," Applied Energy, Elsevier, vol. 183(C), pages 636-644.
    18. Saboori, Hedayat & Hemmati, Reza & Jirdehi, Mehdi Ahmadi, 2015. "Reliability improvement in radial electrical distribution network by optimal planning of energy storage systems," Energy, Elsevier, vol. 93(P2), pages 2299-2312.
    19. Paolo Falbo & Juri Hinz & Piyachat Leelasilapasart & Cristian Pelizzari, 2021. "A Computational Approach to Sequential Decision Optimization in Energy Storage and Trading," Research Paper Series 422, Quantitative Finance Research Centre, University of Technology, Sydney.
    20. Mustafa Cagatay Kocer & Ceyhun Cengiz & Mehmet Gezer & Doruk Gunes & Mehmet Aytac Cinar & Bora Alboyaci & Ahmet Onen, 2019. "Assessment of Battery Storage Technologies for a Turkish Power Network," Sustainability, MDPI, vol. 11(13), pages 1-33, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1166-:d:144935. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.