IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i23p4577-d292833.html
   My bibliography  Save this article

Data-Driven Distributionally Robust Stochastic Control of Energy Storage for Wind Power Ramp Management Using the Wasserstein Metric

Author

Listed:
  • Insoon Yang

    (Department of Electrical and Computer Engineering, Automation and Systems Research Institute, Seoul National University, Seoul 08826, Korea)

Abstract

The integration of wind energy into the power grid is challenging because of its variability, which causes high ramp events that may threaten the reliability and efficiency of power systems. In this paper, we propose a novel distributionally robust solution to wind power ramp management using energy storage. The proposed storage operation strategy minimizes the expected ramp penalty under the worst-case wind power ramp distribution in the Wasserstein ambiguity set , a statistical ball centered at an empirical distribution obtained from historical data. Thus, the resulting distributionally robust control policy presents a robust ramp management performance even when the future wind power ramp distribution deviates from the empirical distribution, unlike the standard stochastic optimal control method. For a tractable numerical solution, a duality-based dynamic programming algorithm is designed with a piecewise linear approximation of the optimal value function. The performance and utility of the proposed method are demonstrated and analyzed through case studies using the wind power data in the Bonneville Power Administration area for the year 2018.

Suggested Citation

  • Insoon Yang, 2019. "Data-Driven Distributionally Robust Stochastic Control of Energy Storage for Wind Power Ramp Management Using the Wasserstein Metric," Energies, MDPI, vol. 12(23), pages 1-14, December.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4577-:d:292833
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/23/4577/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/23/4577/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lopez, Marco & Still, Georg, 2007. "Semi-infinite programming," European Journal of Operational Research, Elsevier, vol. 180(2), pages 491-518, July.
    2. Jae Ho Kim & Warren B. Powell, 2011. "Optimal Energy Commitments with Storage and Intermittent Supply," Operations Research, INFORMS, vol. 59(6), pages 1347-1360, December.
    3. Huan Xu & Shie Mannor, 2012. "Distributionally Robust Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 37(2), pages 288-300, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gengli Song & Hua Wei, 2022. "Distributionally Robust Multi-Energy Dynamic Optimal Power Flow Considering Water Spillage with Wasserstein Metric," Energies, MDPI, vol. 15(11), pages 1-18, May.
    2. Yiling Zhang & Jin Dong, 2022. "Building Load Control Using Distributionally Robust Chance-Constrained Programs with Right-Hand Side Uncertainty and the Risk-Adjustable Variants," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1531-1547, May.
    3. Wang, Xuejie & Li, Bingkang & Wang, Yuwei & Lu, Hao & Zhao, Huiru & Xue, Wanlei, 2022. "A bargaining game-based profit allocation method for the wind-hydrogen-storage combined system," Applied Energy, Elsevier, vol. 310(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedro Crespo Del Granado & Stein Wallace & Zhan Pang, 2016. "The impact of wind uncertainty on the strategic valuation of distributed electricity storage," Computational Management Science, Springer, vol. 13(1), pages 5-27, January.
    2. Wang, Jingxing & Chung, Seokhyun & AlShelahi, Abdullah & Kontar, Raed & Byon, Eunshin & Saigal, Romesh, 2021. "Look-ahead decision making for renewable energy: A dynamic “predict and store” approach," Applied Energy, Elsevier, vol. 296(C).
    3. Benedikt Finnah, 2022. "Optimal bidding functions for renewable energies in sequential electricity markets," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 1-27, March.
    4. Stein, Oliver, 2012. "How to solve a semi-infinite optimization problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 312-320.
    5. Somayeh Moazeni & Warren B. Powell & Boris Defourny & Belgacem Bouzaiene-Ayari, 2017. "Parallel Nonstationary Direct Policy Search for Risk-Averse Stochastic Optimization," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 332-349, May.
    6. Maximilian Blesch & Philipp Eisenhauer, 2021. "Robust decision-making under risk and ambiguity," Papers 2104.12573, arXiv.org, revised Oct 2021.
    7. Souvik Das & Ashwin Aravind & Ashish Cherukuri & Debasish Chatterjee, 2022. "Near-optimal solutions of convex semi-infinite programs via targeted sampling," Annals of Operations Research, Springer, vol. 318(1), pages 129-146, November.
    8. Aguiar, Victor H. & Kashaev, Nail & Allen, Roy, 2023. "Prices, profits, proxies, and production," Journal of Econometrics, Elsevier, vol. 235(2), pages 666-693.
    9. Li Wang & Feng Guo, 2014. "Semidefinite relaxations for semi-infinite polynomial programming," Computational Optimization and Applications, Springer, vol. 58(1), pages 133-159, May.
    10. S. Mishra & M. Jaiswal & H. Le Thi, 2012. "Nonsmooth semi-infinite programming problem using Limiting subdifferentials," Journal of Global Optimization, Springer, vol. 53(2), pages 285-296, June.
    11. Guanglei Wang & Hassan Hijazi, 2018. "Mathematical programming methods for microgrid design and operations: a survey on deterministic and stochastic approaches," Computational Optimization and Applications, Springer, vol. 71(2), pages 553-608, November.
    12. Frank Schneider & Ulrich W. Thonemann & Diego Klabjan, 2018. "Optimization of Battery Charging and Purchasing at Electric Vehicle Battery Swap Stations," Transportation Science, INFORMS, vol. 52(5), pages 1211-1234, October.
    13. Nadarajah, Selvaprabu & Secomandi, Nicola, 2023. "A review of the operations literature on real options in energy," European Journal of Operational Research, Elsevier, vol. 309(2), pages 469-487.
    14. Shiau Hong Lim & Huan Xu & Shie Mannor, 2016. "Reinforcement Learning in Robust Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1325-1353, November.
    15. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
    16. Shaojian Qu & Mark Goh & Soon-Yi Wu & Robert Souza, 2014. "Multiobjective DC programs with infinite convex constraints," Journal of Global Optimization, Springer, vol. 59(1), pages 41-58, May.
    17. Kost, Christoph & Flath, Christoph M. & Möst, Dominik, 2013. "Concentrating solar power plant investment and operation decisions under different price and support mechanisms," Energy Policy, Elsevier, vol. 61(C), pages 238-248.
    18. Cao Thanh Tinh & Thai Doan Chuong, 2022. "Conic Linear Programming Duals for Classes of Quadratic Semi-Infinite Programs with Applications," Journal of Optimization Theory and Applications, Springer, vol. 194(2), pages 570-596, August.
    19. Josef Kallrath & Steffen Rebennack, 2014. "Cutting ellipses from area-minimizing rectangles," Journal of Global Optimization, Springer, vol. 59(2), pages 405-437, July.
    20. Duarte, Belmiro P.M. & Sagnol, Guillaume & Wong, Weng Kee, 2018. "An algorithm based on semidefinite programming for finding minimax optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 99-117.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4577-:d:292833. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.