IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i23p4568-d292531.html
   My bibliography  Save this article

Theoretical and Experimental Study to Determine Voltage Violation, Reverse Electric Current and Losses in Prosumers Connected to Low-Voltage Power Grid

Author

Listed:
  • Igor Cavalcante Torres

    (Agricultural Sciences Center, Universidade Federal de Alagoas, Rio Largo 57100-000, Brazil)

  • Gustavo F. Negreiros

    (Nuclear Energy, Universidade Federal de Pernambuco, Recife 50740-545, Brazil)

  • Chigueru Tiba

    (Nuclear Energy, Universidade Federal de Pernambuco, Recife 50740-545, Brazil)

Abstract

The impact of PV generation distributed in a low voltage transmission line depends on many factors: The distribution lines and PV generators characteristics, its location, operational control, local meteorological conditions, electricity consumption profile, and the electricity cost variation. An atypical and challenging behavior of photovoltaic distributed generation (DG) insertion in consumer units (CUs), implies in some circumstances, as the reverse directionality of the power flow between the load equipped with a photovoltaic system generator and the electrical grid, when a CU contains a distributed generation and low power consumption, the power flow will be directed to the power electric grid. In this work, the modeling of a low-voltage real feeder was performed, setting the variables of the system under real operating conditions. As result, voltage levels variability throughout the feeder, the electrical losses, and the asymmetry between the phases were observed. Through simulation scenarios, the occurrence of voltage increase under different penetration scenarios of distributed generation was verified and there was a 10% increase in reference voltage as well as the occurrence of higher electrical losses by reverse current, reaching 1200% more with a DG penetration, in the massive presence of the photovoltaic generator. The mitigatory action used in this work was able to attenuate the negative impacts to the feeder circuit, ensuring the integrity grid and the consumer unit.

Suggested Citation

  • Igor Cavalcante Torres & Gustavo F. Negreiros & Chigueru Tiba, 2019. "Theoretical and Experimental Study to Determine Voltage Violation, Reverse Electric Current and Losses in Prosumers Connected to Low-Voltage Power Grid," Energies, MDPI, vol. 12(23), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4568-:d:292531
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/23/4568/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/23/4568/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qiangqiang Xie & Xiangrong Shentu & Xusheng Wu & Yi Ding & Yongzhu Hua & Jiadong Cui, 2019. "Coordinated Voltage Regulation by On-Load Tap Changer Operation and Demand Response Based on Voltage Ranking Search Algorithm," Energies, MDPI, vol. 12(10), pages 1-19, May.
    2. Yu-Cheol Jeong & Eul-Bum Lee & Douglas Alleman, 2019. "Reducing Voltage Volatility with Step Voltage Regulators: A Life-Cycle Cost Analysis of Korean Solar Photovoltaic Distributed Generation," Energies, MDPI, vol. 12(4), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Issah Babatunde Majeed & Nnamdi I. Nwulu, 2022. "Impact of Reverse Power Flow on Distributed Transformers in a Solar-Photovoltaic-Integrated Low-Voltage Network," Energies, MDPI, vol. 15(23), pages 1-19, December.
    2. Gregorio Fernández & Alejandro Martínez & Noemí Galán & Javier Ballestín-Fuertes & Jesús Muñoz-Cruzado-Alba & Pablo López & Simon Stukelj & Eleni Daridou & Alessio Rezzonico & Dimosthenis Ioannidis, 2021. "Optimal D-STATCOM Placement Tool for Low Voltage Grids," Energies, MDPI, vol. 14(14), pages 1-31, July.
    3. Gustavo Fernandes de Negreiros & Fábio Xavier Lobo & Igor Cavalcante Torres & Chigueru Tiba, 2023. "Impact on Voltage Regulation in Medium Voltage Distribution Networks Due to the Insertion of Photovoltaic Generators," Energies, MDPI, vol. 16(3), pages 1-18, January.
    4. Igor Cavalcante Torres & Daniel M. Farias & Andre L. L. Aquino & Chigueru Tiba, 2021. "Voltage Regulation For Residential Prosumers Using a Set of Scalable Power Storage," Energies, MDPI, vol. 14(11), pages 1-28, June.
    5. Gregorio Fernández & Noemi Galan & Daniel Marquina & Diego Martínez & Alberto Sanchez & Pablo López & Hans Bludszuweit & Jorge Rueda, 2020. "Photovoltaic Generation Impact Analysis in Low Voltage Distribution Grids," Energies, MDPI, vol. 13(17), pages 1-27, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A.S. Jameel Hassan & Umar Marikkar & G.W. Kasun Prabhath & Aranee Balachandran & W.G. Chaminda Bandara & Parakrama B. Ekanayake & Roshan I. Godaliyadda & Janaka B. Ekanayake, 2021. "A Sensitivity Matrix Approach Using Two-Stage Optimization for Voltage Regulation of LV Networks with High PV Penetration," Energies, MDPI, vol. 14(20), pages 1-24, October.
    2. Hee-Kwan Shin & Jae-Min Cho & Eul-Bum Lee, 2019. "Electrical Power Characteristics and Economic Analysis of Distributed Generation System Using Renewable Energy: Applied to Iron and Steel Plants," Sustainability, MDPI, vol. 11(22), pages 1-27, November.
    3. Jung, Seunghoon & Jeoung, Jaewon & Kang, Hyuna & Hong, Taehoon, 2021. "Optimal planning of a rooftop PV system using GIS-based reinforcement learning," Applied Energy, Elsevier, vol. 298(C).
    4. Amro M Elshurafa & Abdel Rahman Muhsen, 2019. "The Upper Limit of Distributed Solar PV Capacity in Riyadh: A GIS-Assisted Study," Sustainability, MDPI, vol. 11(16), pages 1-20, August.
    5. Linglei Xu & Qiangqiang Xie & Liang Zheng & Yongzhu Hua & Lihuan Shao & Jiadong Cui, 2022. "Stackelberg-Game-Based Demand Response for Voltage Regulation in Distribution Network with High Penetration of Electric Vehicles," Energies, MDPI, vol. 15(10), pages 1-13, May.
    6. Yongzhu Hua & Qiangqiang Xie & Liang Zheng & Jiadong Cui & Lihuan Shao & Weiwei Hu, 2022. "Coordinated Voltage Control Strategy by Optimizing the Limited Regulation Capacity of Air Conditioners," Energies, MDPI, vol. 15(9), pages 1-14, April.
    7. Xiangdong Wang & Lei Wang & Wenfa Kang & Tiecheng Li & Hao Zhou & Xuekai Hu & Kai Sun, 2022. "Distributed Nodal Voltage Regulation Method for Low-Voltage Distribution Networks by Sharing PV System Reactive Power," Energies, MDPI, vol. 16(1), pages 1-15, December.
    8. Yassir Maataoui & Hamid Chekenbah & Omar Boutfarjoute & Vicenç Puig & Rafik Lasri, 2023. "A Coordinated Voltage Regulation Algorithm of a Power Distribution Grid with Multiple Photovoltaic Distributed Generators Based on Active Power Curtailment and On-Line Tap Changer," Energies, MDPI, vol. 16(14), pages 1-17, July.
    9. Gregorio Fernández & Noemi Galan & Daniel Marquina & Diego Martínez & Alberto Sanchez & Pablo López & Hans Bludszuweit & Jorge Rueda, 2020. "Photovoltaic Generation Impact Analysis in Low Voltage Distribution Grids," Energies, MDPI, vol. 13(17), pages 1-27, August.
    10. Igor Cavalcante Torres & Daniel M. Farias & Andre L. L. Aquino & Chigueru Tiba, 2021. "Voltage Regulation For Residential Prosumers Using a Set of Scalable Power Storage," Energies, MDPI, vol. 14(11), pages 1-28, June.
    11. Gregorio Fernández & Alejandro Martínez & Noemí Galán & Javier Ballestín-Fuertes & Jesús Muñoz-Cruzado-Alba & Pablo López & Simon Stukelj & Eleni Daridou & Alessio Rezzonico & Dimosthenis Ioannidis, 2021. "Optimal D-STATCOM Placement Tool for Low Voltage Grids," Energies, MDPI, vol. 14(14), pages 1-31, July.
    12. Gharibvand, Hossein & Gharehpetian, G.B. & Anvari-Moghaddam, A., 2024. "A survey on microgrid flexibility resources, evaluation metrics and energy storage effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 201(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4568-:d:292531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.