IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i23p4498-d291026.html
   My bibliography  Save this article

An Improved Constrained Order Optimization Algorithm for Uncertain SCUC Problem Solving

Author

Listed:
  • Junjie Jia

    (New Energy Micro-grid Collaborative Innovation Centre of Hubei Province, China Three Gorges University, Yichang 443002, China)

  • Nan Yang

    (New Energy Micro-grid Collaborative Innovation Centre of Hubei Province, China Three Gorges University, Yichang 443002, China)

  • Chao Xing

    (Electric Power Research Institute, Yunnan Power Grid Co., Ltd., Kunming 650217, China)

  • Haoze Chen

    (State Grid Yichang Power Supply Company, State Grid Hubei Electric power CO., Ltd., Yichang 443000, China)

  • Songkai Liu

    (New Energy Micro-grid Collaborative Innovation Centre of Hubei Province, China Three Gorges University, Yichang 443002, China)

  • Yuehua Huang

    (New Energy Micro-grid Collaborative Innovation Centre of Hubei Province, China Three Gorges University, Yichang 443002, China)

  • Binxin Zhu

    (New Energy Micro-grid Collaborative Innovation Centre of Hubei Province, China Three Gorges University, Yichang 443002, China)

Abstract

Studying the faster and more efficient method of solving the uncertain security-constrained unit commitment (SCUC) problem is an urgent need for the development of power systems under the background of large-scale wind power access and power dispatching. This study proposes an improved constrained order optimization (COO) algorithm to solve the uncertain SCUC problem. First, the data-driven discrete variable identification strategy is incorporated into the COO rough model, and then, the invalid security constraints identification strategy is incorporated into the COO accurate model. Finally, the improved COO algorithm combines the discrete variable identification with the invalid security constraint identification to make the uncertain SCUC decision. The results of the IEEE 118-bus test system showed that, compared with the traditional COO algorithm, the improved COO algorithm proposed has higher accuracy and better efficiency.

Suggested Citation

  • Junjie Jia & Nan Yang & Chao Xing & Haoze Chen & Songkai Liu & Yuehua Huang & Binxin Zhu, 2019. "An Improved Constrained Order Optimization Algorithm for Uncertain SCUC Problem Solving," Energies, MDPI, vol. 12(23), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4498-:d:291026
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/23/4498/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/23/4498/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abujarad, Saleh Y. & Mustafa, M.W. & Jamian, J.J., 2017. "Recent approaches of unit commitment in the presence of intermittent renewable energy resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 215-223.
    2. Shahbazitabar, Maryam & Abdi, Hamdi, 2018. "A novel priority-based stochastic unit commitment considering renewable energy sources and parking lot cooperation," Energy, Elsevier, vol. 161(C), pages 308-324.
    3. T. W. Edward Lau & Y. C. Ho, 1997. "Universal Alignment Probabilities and Subset Selection for Ordinal Optimization," Journal of Optimization Theory and Applications, Springer, vol. 93(3), pages 455-489, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis Montero & Antonio Bello & Javier Reneses, 2022. "A Review on the Unit Commitment Problem: Approaches, Techniques, and Resolution Methods," Energies, MDPI, vol. 15(4), pages 1-40, February.
    2. Harun Or Rashid Howlader & Oludamilare Bode Adewuyi & Ying-Yi Hong & Paras Mandal & Ashraf Mohamed Hemeida & Tomonobu Senjyu, 2019. "Energy Storage System Analysis Review for Optimal Unit Commitment," Energies, MDPI, vol. 13(1), pages 1-21, December.
    3. Doubleday, Kate & Lara, José Daniel & Hodge, Bri-Mathias, 2022. "Investigation of stochastic unit commitment to enable advanced flexibility measures for high shares of solar PV," Applied Energy, Elsevier, vol. 321(C).
    4. Abdi, Hamdi, 2021. "Profit-based unit commitment problem: A review of models, methods, challenges, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    5. Nikolaidis, Pavlos & Poullikkas, Andreas, 2021. "A novel cluster-based spinning reserve dynamic model for wind and PV power reinforcement," Energy, Elsevier, vol. 234(C).
    6. Vladimir I. Norkin & Yuri M. Ermoliev & Andrzej Ruszczyński, 1998. "On Optimal Allocation of Indivisibles Under Uncertainty," Operations Research, INFORMS, vol. 46(3), pages 381-395, June.
    7. Ceran, Bartosz, 2019. "The concept of use of PV/WT/FC hybrid power generation system for smoothing the energy profile of the consumer," Energy, Elsevier, vol. 167(C), pages 853-865.
    8. Ying-Yi Hong & Gerard Francesco DG. Apolinario, 2021. "Uncertainty in Unit Commitment in Power Systems: A Review of Models, Methods, and Applications," Energies, MDPI, vol. 14(20), pages 1-47, October.
    9. Wilberforce, Tabbi & El Hassan, Zaki & Durrant, A. & Thompson, J. & Soudan, Bassel & Olabi, A.G., 2019. "Overview of ocean power technology," Energy, Elsevier, vol. 175(C), pages 165-181.
    10. S.-C. Horng & S.-Y. Lin, 2009. "Ordinal Optimization of G/G/1/K Polling Systems with k-Limited Service Discipline," Journal of Optimization Theory and Applications, Springer, vol. 140(2), pages 213-231, February.
    11. Wang, Jinda & Zhou, Zhigang & Zhao, Jianing & Zheng, Jinfu, 2018. "Improving wind power integration by a novel short-term dispatch model based on free heat storage and exhaust heat recycling," Energy, Elsevier, vol. 160(C), pages 940-953.
    12. Dong, Jizhe & Han, Shunjie & Shao, Xiangxin & Tang, Like & Chen, Renhui & Wu, Longfei & Zheng, Cunlong & Li, Zonghao & Li, Haolin, 2021. "Day-ahead wind-thermal unit commitment considering historical virtual wind power data," Energy, Elsevier, vol. 235(C).
    13. Chyong, Chi Kong & Newbery, David, 2022. "A unit commitment and economic dispatch model of the GB electricity market – Formulation and application to hydro pumped storage," Energy Policy, Elsevier, vol. 170(C).
    14. Vasilios A. Tsalavoutis & Constantinos G. Vrionis & Athanasios I. Tolis, 2021. "Optimizing a unit commitment problem using an evolutionary algorithm and a plurality of priority lists," Operational Research, Springer, vol. 21(1), pages 1-54, March.
    15. Gerrit Erichsen & Tobias Zimmermann & Alfons Kather, 2019. "Effect of Different Interval Lengths in a Rolling Horizon MILP Unit Commitment with Non-Linear Control Model for a Small Energy System," Energies, MDPI, vol. 12(6), pages 1-24, March.
    16. Hongxia Liu & Huiling Wang & Zongtang Xie, 2019. "Wind utilization and carbon emissions equilibrium: Scheduling strategy for wind-thermal generation system," Energy & Environment, , vol. 30(6), pages 1111-1131, September.
    17. M.S. Yang & L.H. Lee, 2002. "Ordinal Optimization with Subset Selection Rule," Journal of Optimization Theory and Applications, Springer, vol. 113(3), pages 597-620, June.
    18. Zhu, Xiaodong & Zhao, Shihao & Yang, Zhile & Zhang, Ning & Xu, Xinzhi, 2022. "A parallel meta-heuristic method for solving large scale unit commitment considering the integration of new energy sectors," Energy, Elsevier, vol. 238(PC).
    19. Zhao, Ning & You, Fengqi, 2022. "Sustainable power systems operations under renewable energy induced disjunctive uncertainties via machine learning-based robust optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    20. Payal Mitra & Soumendu Sarkar & Tarun Mehta & Atul Kumar, 2022. "Unit Commitment in a Federalized Power Market: A Mixed Integer Programming Approach," Working papers 323, Centre for Development Economics, Delhi School of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4498-:d:291026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.