IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i23p4421-d289358.html
   My bibliography  Save this article

Performance Analysis of Direct Injection Diesel Engine Fueled with Diesel-Tomato Seed Oil Biodiesel Blending by ANOVA and ANN

Author

Listed:
  • Rahim Karami

    (School of Engineering and Technology, Central Queensland University, Rockhampton, Queensland 4702, Australia
    School of Bio System Engineering, Shiraz University, Shiraz 71454, Iran)

  • Mohammad G. Rasul

    (School of Engineering and Technology, Central Queensland University, Rockhampton, Queensland 4702, Australia)

  • Mohammad M. K. Khan

    (School of Engineering and Technology, Central Queensland University, Rockhampton, Queensland 4702, Australia)

  • Mohammad Anwar

    (School of Engineering and Technology, Central Queensland University, Rockhampton, Queensland 4702, Australia)

Abstract

Biodiesel is an alternative fuel for diesel engine. Considering the differences between diesel and biodiesel fuels, the engine condition should be modified based on the fuel or fuel blends to achieve optimum performance. This study presented a performance analysis of a direct-injected (DI) diesel engine with a dynamometer fueled with diesel-tomato seed biodiesel (TSOB) blends employing ANOVA and universal nonlinear model based on ANN. The experiments were carried out under conditions of some independent variables including different engine loads (0, 50, 100%) and speed (1800, 2150, and 2500 rpm) for four diesel-biodiesel combinations (B0, B5, B10, and B20). In this research, the effect of these factors on dependent variables including power, torque, SFC, FC, and Exhaust Gas Temperature (EGT) are investigated. Duncan′s multi-domain test at a significance level of R < 0.01 shows that the highest and lowest of the torque and power are produced from B5 and B20, respectively. These results show that the lowest EGT of 613 K is related to B20 and the highest EGT is related to B5 and B10. The regression models showed that the torque decreases with increasing the engine speed and biodiesel percentage. These results also show that the highest and the lowest SFC is related to B0 and B20, respectively. The ANN model shows high capability of predicting the engine performance parameters and emissions, without running costly and time-consuming experiments with the histogram error of 0.004 and R = 0.96. It also proved that ANN is a non-linear model of choice to deal with these data, instead of multivariate linear regression employed for preliminary analysis.

Suggested Citation

  • Rahim Karami & Mohammad G. Rasul & Mohammad M. K. Khan & Mohammad Anwar, 2019. "Performance Analysis of Direct Injection Diesel Engine Fueled with Diesel-Tomato Seed Oil Biodiesel Blending by ANOVA and ANN," Energies, MDPI, vol. 12(23), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4421-:d:289358
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/23/4421/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/23/4421/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hosseini, Seyyed Hassan & Taghizadeh-Alisaraei, Ahmad & Ghobadian, Barat & Abbaszadeh-Mayvan, Ahmad, 2017. "Effect of added alumina as nano-catalyst to diesel-biodiesel blends on performance and emission characteristics of CI engine," Energy, Elsevier, vol. 124(C), pages 543-552.
    2. Xue, Jinlin & Grift, Tony E. & Hansen, Alan C., 2011. "Effect of biodiesel on engine performances and emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1098-1116, February.
    3. Shaafi, T. & Velraj, R., 2015. "Influence of alumina nanoparticles, ethanol and isopropanol blend as additive with diesel–soybean biodiesel blend fuel: Combustion, engine performance and emissions," Renewable Energy, Elsevier, vol. 80(C), pages 655-663.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rahim Karami & Mohammad G. Rasul & Mohammad M. K. Khan, 2020. "CFD Simulation and a Pragmatic Analysis of Performance and Emissions of Tomato Seed Biodiesel Blends in a 4-Cylinder Diesel Engine," Energies, MDPI, vol. 13(14), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahim Karami & Mohammad G. Rasul & Mohammad M. K. Khan, 2020. "CFD Simulation and a Pragmatic Analysis of Performance and Emissions of Tomato Seed Biodiesel Blends in a 4-Cylinder Diesel Engine," Energies, MDPI, vol. 13(14), pages 1-21, July.
    2. Altarazi, Yazan S.M. & Abu Talib, Abd Rahim & Yu, Jianglong & Gires, Ezanee & Abdul Ghafir, Mohd Fahmi & Lucas, John & Yusaf, Talal, 2022. "Effects of biofuel on engines performance and emission characteristics: A review," Energy, Elsevier, vol. 238(PC).
    3. Venu, Harish & Raju, V. Dhana & Subramani, Lingesan, 2019. "Combined effect of influence of nano additives, combustion chamber geometry and injection timing in a DI diesel engine fuelled with ternary (diesel-biodiesel-ethanol) blends," Energy, Elsevier, vol. 174(C), pages 386-406.
    4. Agarwal, Swati & Kumari, Sonu & Mudgal, Anurag & Khan, Suphiya, 2020. "Green synthesized nanoadditives in jojoba biodiesel-diesel blends: An improvement of engine performance and emission," Renewable Energy, Elsevier, vol. 147(P1), pages 1836-1844.
    5. Venu, Harish & Raju, V. Dhana & Lingesan, S. & Elahi M Soudagar, Manzoore, 2021. "Influence of Al2O3nano additives in ternary fuel (diesel-biodiesel-ethanol) blends operated in a single cylinder diesel engine: Performance, combustion and emission characteristics," Energy, Elsevier, vol. 215(PB).
    6. Wu, Qibai & Xie, Xialin & Wang, Yaodong & Roskilly, Tony, 2018. "Effect of carbon coated aluminum nanoparticles as additive to biodiesel-diesel blends on performance and emission characteristics of diesel engine," Applied Energy, Elsevier, vol. 221(C), pages 597-604.
    7. Mohd Noor, C.W. & Noor, M.M. & Mamat, R., 2018. "Biodiesel as alternative fuel for marine diesel engine applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 127-142.
    8. Hosseini, Seyyed Hassan & Taghizadeh-Alisaraei, Ahmad & Ghobadian, Barat & Abbaszadeh-Mayvan, Ahmad, 2017. "Effect of added alumina as nano-catalyst to diesel-biodiesel blends on performance and emission characteristics of CI engine," Energy, Elsevier, vol. 124(C), pages 543-552.
    9. Jegan, C. Dhayananth & Selvakumaran, T. & Karthe, M. & Hemachandu, P. & Gopinathan, R. & Sathish, T. & Ağbulut, Ümit, 2023. "Influences of various metal oxide-based nanosized particles-added algae biodiesel on engine characteristics," Energy, Elsevier, vol. 284(C).
    10. Hosseinzadeh-Bandbafha, Homa & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Orooji, Yasin & Shahbeik, Hossein & Mahian, Omid & Karimi-Maleh, Hassan & Kalam, Md Abul & Salehi Jouzani, Gholamreza & M, 2023. "Applications of nanotechnology in biodiesel combustion and post-combustion stages," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    11. Rajaeifar, Mohammad Ali & Abdi, Reza & Tabatabaei, Meisam, 2017. "Expanded polystyrene waste application for improving biodiesel environmental performance parameters from life cycle assessment point of view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 278-298.
    12. Soudagar, Manzoore Elahi M. & Nik-Ghazali, Nik-Nazri & Kalam, M.A. & Badruddin, Irfan Anjum & Banapurmath, N.R. & Bin Ali, Mohamad Azlin & Kamangar, Sarfaraz & Cho, Haeng Muk & Akram, Naveed, 2020. "An investigation on the influence of aluminium oxide nano-additive and honge oil methyl ester on engine performance, combustion and emission characteristics," Renewable Energy, Elsevier, vol. 146(C), pages 2291-2307.
    13. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    14. Ağbulut, Ümit & Polat, Fikret & Sarıdemir, Suat, 2021. "A comprehensive study on the influences of different types of nano-sized particles usage in diesel-bioethanol blends on combustion, performance, and environmental aspects," Energy, Elsevier, vol. 229(C).
    15. Vigneshwar, V. & Krishnan, S. Yogesh & Kishna, R. Susanth & Srinath, R. & Ashok, B. & Nanthagopal, K., 2019. "Comprehensive review of Calophyllum inophyllum as a feasible alternate energy for CI engine applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    16. Singh, Paramvir & Varun, & Chauhan, S.R., 2016. "Carbonyl and aromatic hydrocarbon emissions from diesel engine exhaust using different feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 269-291.
    17. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    18. Varatharajan, K. & Cheralathan, M., 2012. "Influence of fuel properties and composition on NOx emissions from biodiesel powered diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3702-3710.
    19. Solmaz, Hamit & Ardebili, Seyed Mohammad Safieddin & Calam, Alper & Yılmaz, Emre & İpci, Duygu, 2021. "Prediction of performance and exhaust emissions of a CI engine fueled with multi-wall carbon nanotube doped biodiesel-diesel blends using response surface method," Energy, Elsevier, vol. 227(C).
    20. Liu, Teng & E, Jiaqiang & Yang, W.M. & Deng, Yuangwang & An, H. & Zhang, Zhiqing & Pham, Minhhieu, 2018. "Investigation on the applicability for reaction rates adjustment of the optimized biodiesel skeletal mechanism," Energy, Elsevier, vol. 150(C), pages 1031-1038.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4421-:d:289358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.