IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i21p4137-d281697.html
   My bibliography  Save this article

Harmonic Loads Classification by Means of Currents’ Physical Components

Author

Listed:
  • Yuval Beck

    (The Physical Electronics Department, School of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel)

  • Ram Machlev

    (The Physical Electronics Department, School of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel)

Abstract

Electric load identification and classification for smart grid environment can improve the power service for both consumers and producers. The main concept of electric load identification and classification is to disaggregate various loads and categorize them. In this paper, a new practical method for electric load identification and classification is presented. The method is based on using a power monitor to analyze a real measured current waveform of a grid-connected device. A set number of features is extracted using the currents’ physical components-based power theory decomposition. Using currents’ physical components ensures a constant number of features, which maintains the signal’s characteristics regardless of the harmonic content. These features are used to train a supervised classifier based on two techniques: artificial neural network and nearest neighbor search. The theory is outlined, and experimental results are shown. This paper demonstrates high accuracy performance in identifying an electric load from a designated database. Furthermore, the results show a definite classification of an untrained operation state of a device to the closest trained operation state, for example, the excitation angle of a dimmer. In a comparative study, the method is shown to outperform other state-of-the-art techniques, which are based on harmonic components.

Suggested Citation

  • Yuval Beck & Ram Machlev, 2019. "Harmonic Loads Classification by Means of Currents’ Physical Components," Energies, MDPI, vol. 12(21), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4137-:d:281697
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/21/4137/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/21/4137/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fan, Guo-Feng & Peng, Li-Ling & Hong, Wei-Chiang, 2018. "Short term load forecasting based on phase space reconstruction algorithm and bi-square kernel regression model," Applied Energy, Elsevier, vol. 224(C), pages 13-33.
    2. Zhou, Kai-le & Yang, Shan-lin & Shen, Chao, 2013. "A review of electric load classification in smart grid environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 103-110.
    3. Yongquan Dong & Zichen Zhang & Wei-Chiang Hong, 2018. "A Hybrid Seasonal Mechanism with a Chaotic Cuckoo Search Algorithm with a Support Vector Regression Model for Electric Load Forecasting," Energies, MDPI, vol. 11(4), pages 1-21, April.
    4. Shengli Du & Mingchao Li & Shuai Han & Jonathan Shi & Heng Li, 2019. "Multi-Pattern Data Mining and Recognition of Primary Electric Appliances from Single Non-Intrusive Load Monitoring Data," Energies, MDPI, vol. 12(6), pages 1-20, March.
    5. Yinze Ren & Hongbin Wu & Hejun Yang & Shihai Yang & Zhixin Li, 2018. "A Method for Load Classification and Energy Scheduling Optimization to Improve Load Reliability," Energies, MDPI, vol. 11(6), pages 1-19, June.
    6. Anwar Ul Haq & Hans-Arno Jacobsen, 2018. "Prospects of Appliance-Level Load Monitoring in Off-the-Shelf Energy Monitors: A Technical Review," Energies, MDPI, vol. 11(1), pages 1-22, January.
    7. Grandjean, A. & Adnot, J. & Binet, G., 2012. "A review and an analysis of the residential electric load curve models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6539-6565.
    8. Aggelos S. Bouhouras & Paschalis A. Gkaidatzis & Konstantinos C. Chatzisavvas & Evangelos Panagiotou & Nikolaos Poulakis & Georgios C. Christoforidis, 2017. "Load Signature Formulation for Non-Intrusive Load Monitoring Based on Current Measurements," Energies, MDPI, vol. 10(4), pages 1-21, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Netzah Calamaro & Avihai Ofir & Doron Shmilovitz, 2021. "Application of Enhanced CPC for Load Identification, Preventive Maintenance and Grid Interpretation," Energies, MDPI, vol. 14(11), pages 1-41, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kailai Ni & Jianzhou Wang & Guangyu Tang & Danxiang Wei, 2019. "Research and Application of a Novel Hybrid Model Based on a Deep Neural Network for Electricity Load Forecasting: A Case Study in Australia," Energies, MDPI, vol. 12(13), pages 1-30, June.
    2. Mei-Li Shen & Cheng-Feng Lee & Hsiou-Hsiang Liu & Po-Yin Chang & Cheng-Hong Yang, 2021. "An Effective Hybrid Approach for Forecasting Currency Exchange Rates," Sustainability, MDPI, vol. 13(5), pages 1-29, March.
    3. Wei-Chiang Hong & Guo-Feng Fan, 2019. "Hybrid Empirical Mode Decomposition with Support Vector Regression Model for Short Term Load Forecasting," Energies, MDPI, vol. 12(6), pages 1-16, March.
    4. Xin-gang, Zhao & Ze-qi, Zhang & Yi-min, Xie & Jin, Meng, 2020. "Economic-environmental dispatch of microgrid based on improved quantum particle swarm optimization," Energy, Elsevier, vol. 195(C).
    5. Guo-Feng Fan & Yan-Hui Guo & Jia-Mei Zheng & Wei-Chiang Hong, 2019. "Application of the Weighted K-Nearest Neighbor Algorithm for Short-Term Load Forecasting," Energies, MDPI, vol. 12(5), pages 1-19, March.
    6. Sungwoo Park & Jihoon Moon & Seungwon Jung & Seungmin Rho & Sung Wook Baik & Eenjun Hwang, 2020. "A Two-Stage Industrial Load Forecasting Scheme for Day-Ahead Combined Cooling, Heating and Power Scheduling," Energies, MDPI, vol. 13(2), pages 1-23, January.
    7. Tongxiang Liu & Yu Jin & Yuyang Gao, 2019. "A New Hybrid Approach for Short-Term Electric Load Forecasting Applying Support Vector Machine with Ensemble Empirical Mode Decomposition and Whale Optimization," Energies, MDPI, vol. 12(8), pages 1-20, April.
    8. Zhu, Xiaoyue & Dang, Yaoguo & Ding, Song, 2020. "Using a self-adaptive grey fractional weighted model to forecast Jiangsu’s electricity consumption in China," Energy, Elsevier, vol. 190(C).
    9. Shahzad Aslam & Nasir Ayub & Umer Farooq & Muhammad Junaid Alvi & Fahad R. Albogamy & Gul Rukh & Syed Irtaza Haider & Ahmad Taher Azar & Rasool Bukhsh, 2021. "Towards Electric Price and Load Forecasting Using CNN-Based Ensembler in Smart Grid," Sustainability, MDPI, vol. 13(22), pages 1-28, November.
    10. Singh, Priyanka & Dwivedi, Pragya & Kant, Vibhor, 2019. "A hybrid method based on neural network and improved environmental adaptation method using Controlled Gaussian Mutation with real parameter for short-term load forecasting," Energy, Elsevier, vol. 174(C), pages 460-477.
    11. Zhou, Kaile & Fu, Chao & Yang, Shanlin, 2016. "Big data driven smart energy management: From big data to big insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 215-225.
    12. Antonio Ruano & Alvaro Hernandez & Jesus Ureña & Maria Ruano & Juan Garcia, 2019. "NILM Techniques for Intelligent Home Energy Management and Ambient Assisted Living: A Review," Energies, MDPI, vol. 12(11), pages 1-29, June.
    13. Hari Prasad Devarapalli & V. S. S. Siva Sarma Dhanikonda & Sitarama Brahmam Gunturi, 2020. "Non-Intrusive Identification of Load Patterns in Smart Homes Using Percentage Total Harmonic Distortion," Energies, MDPI, vol. 13(18), pages 1-15, September.
    14. Cheng-Hong Yang & Po-Yin Chang, 2020. "Forecasting the Demand for Container Throughput Using a Mixed-Precision Neural Architecture Based on CNN–LSTM," Mathematics, MDPI, vol. 8(10), pages 1-17, October.
    15. Laouafi, Abderrezak & Laouafi, Farida & Boukelia, Taqiy Eddine, 2022. "An adaptive hybrid ensemble with pattern similarity analysis and error correction for short-term load forecasting," Applied Energy, Elsevier, vol. 322(C).
    16. Haidar, Ahmed M.A. & Muttaqi, Kashem & Sutanto, Danny, 2015. "Smart Grid and its future perspectives in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1375-1389.
    17. Jihoon Moon & Junhong Kim & Pilsung Kang & Eenjun Hwang, 2020. "Solving the Cold-Start Problem in Short-Term Load Forecasting Using Tree-Based Methods," Energies, MDPI, vol. 13(4), pages 1-37, February.
    18. Pascal A. Schirmer & Iosif Mporas, 2019. "Statistical and Electrical Features Evaluation for Electrical Appliances Energy Disaggregation," Sustainability, MDPI, vol. 11(11), pages 1-14, June.
    19. Capozzoli, Alfonso & Piscitelli, Marco Savino & Brandi, Silvio & Grassi, Daniele & Chicco, Gianfranco, 2018. "Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings," Energy, Elsevier, vol. 157(C), pages 336-352.
    20. McKenna, R. & Hofmann, L. & Merkel, E. & Fichtner, W. & Strachan, N., 2016. "Analysing socioeconomic diversity and scaling effects on residential electricity load profiles in the context of low carbon technology uptake," Energy Policy, Elsevier, vol. 97(C), pages 13-26.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4137-:d:281697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.