Self-Heating Ability of Geopolymers Enhanced by Carbon Black Admixtures at Different Voltage Loads
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ali, M.B. & Saidur, R. & Hossain, M.S., 2011. "A review on emission analysis in cement industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2252-2261, June.
- Junxiao Wei & Kuang Cen & Yuanbo Geng, 2019. "Evaluation and mitigation of cement CO2 emissions: projection of emission scenarios toward 2030 in China and proposal of the roadmap to a low-carbon world by 2050," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(2), pages 301-328, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lukáš Fiala & Michaela Petříková & Martin Keppert & Martin Böhm & Jaroslav Pokorný & Robert Černý, 2021. "Influence of Untreated Metal Waste from 3D Printing on Electrical Properties of Alkali-Activated Slag Mortars," Energies, MDPI, vol. 14(23), pages 1-14, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jamshidi, Ali & Kurumisawa, Kiyofumi & Nawa, Toyoharu & Igarashi, Toshifumi, 2016. "Performance of pavements incorporating waste glass: The current state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 211-236.
- Hache, Emmanuel & Simoën, Marine & Seck, Gondia Sokhna & Bonnet, Clément & Jabberi, Aymen & Carcanague, Samuel, 2020.
"The impact of future power generation on cement demand: An international and regional assessment based on climate scenarios,"
International Economics, Elsevier, vol. 163(C), pages 114-133.
- Emmanuel Hache & Marine Simoën & Gondia Sokhna Seck & Clément Bonnet & Aymen Jabberi, 2020. "The impact of future power generation on cement demand: An international and regional assessment based on climate scenarios," International Economics, CEPII research center, issue 163, pages 114-133.
- Emmanuel Hache & Marine Simoën & Gondia Sokhna Seck & Clement Bonnet & Aymen Jabberi & Samuel Carcanague, 2020. "The impact of future power generation on cement demand: an international and regional assessment based on climate scenarios," Post-Print hal-02978242, HAL.
- Gao, Tianming & Shen, Lei & Shen, Ming & Liu, Litao & Chen, Fengnan & Gao, Li, 2017. "Evolution and projection of CO2 emissions for China's cement industry from 1980 to 2020," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 522-537.
- Mikulčić, Hrvoje & Vujanović, Milan & Duić, Neven, 2013. "Reducing the CO2 emissions in Croatian cement industry," Applied Energy, Elsevier, vol. 101(C), pages 41-48.
- Dinga, Christian Doh & Wen, Zongguo, 2022. "China's green deal: Can China's cement industry achieve carbon neutral emissions by 2060?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
- Li, Xiaoyan, 2020. "Design of energy-conservation and emission-reduction plans of China’s industry: Evidence from three typical industries," Energy, Elsevier, vol. 209(C).
- Huh, Sung-Yoon & Lee, Hyejin & Shin, Jungwoo & Lee, Donghyun & Jang, Jinyoung, 2018. "Inter-fuel substitution path analysis of the korea cement industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4091-4099.
- Doh Dinga, Christian & Wen, Zongguo, 2021. "Many-objective optimization of energy conservation and emission reduction in China’s cement industry," Applied Energy, Elsevier, vol. 304(C).
- Reza, Bahareh & Soltani, Atousa & Ruparathna, Rajeev & Sadiq, Rehan & Hewage, Kasun, 2013. "Environmental and economic aspects of production and utilization of RDF as alternative fuel in cement plants: A case study of Metro Vancouver Waste Management," Resources, Conservation & Recycling, Elsevier, vol. 81(C), pages 105-114.
- Grzegorz Ludwik Golewski, 2020. "Energy Savings Associated with the Use of Fly Ash and Nanoadditives in the Cement Composition," Energies, MDPI, vol. 13(9), pages 1-20, May.
- Junxiao Wei & Kuang Cen, 2019. "A preliminary calculation of cement carbon dioxide in China from 1949 to 2050," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(8), pages 1343-1362, December.
- Shen, Lei & Gao, Tianming & Zhao, Jianan & Wang, Limao & Wang, Lan & Liu, Litao & Chen, Fengnan & Xue, Jingjing, 2014. "Factory-level measurements on CO2 emission factors of cement production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 337-349.
- Cao, Zhi & Shen, Lei & Zhao, Jianan & Liu, Litao & Zhong, Shuai & Yang, Yan, 2016. "Modeling the dynamic mechanism between cement CO2 emissions and clinker quality to realize low-carbon cement," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 116-126.
- Gu, Guozeng & Gao, Tianming, 2021. "Sustainable production of lithium salts extraction from ores in China: Cleaner production assessment," Resources Policy, Elsevier, vol. 74(C).
- Nhuchhen, Daya R. & Sit, Song P. & Layzell, David B., 2022. "Decarbonization of cement production in a hydrogen economy," Applied Energy, Elsevier, vol. 317(C).
- Abriyantoro, Dedi & Dong, Jingxin & Hicks, Christian & Singh, Surya P., 2019. "A stochastic optimisation model for biomass outsourcing in the cement manufacturing industry with production planning constraints," Energy, Elsevier, vol. 169(C), pages 515-526.
- Xinhang Xu & Chongchong Qi & Xabier M. Aretxabaleta & Chundi Ma & Dino Spagnoli & Hegoi Manzano, 2024. "The initial stages of cement hydration at the molecular level," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Hurmekoski, Elias & Jonsson, Ragnar & Nord, Tomas, 2015. "Context, drivers, and future potential for wood-frame multi-story construction in Europe," Technological Forecasting and Social Change, Elsevier, vol. 99(C), pages 181-196.
- Oluwafemi E. Ige & Oludolapo A. Olanrewaju & Kevin J. Duffy & Obiora C. Collins, 2022. "Environmental Impact Analysis of Portland Cement (CEM1) Using the Midpoint Method," Energies, MDPI, vol. 15(7), pages 1-16, April.
- Haneklaus, Nils & Schröders, Sarah & Zheng, Yanhua & Allelein, Hans-Josef, 2017. "Economic evaluation of flameless phosphate rock calcination with concentrated solar power and high temperature reactors," Energy, Elsevier, vol. 140(P1), pages 1148-1157.
More about this item
Keywords
geopolymers; ground-granulated blast-furnace slag; carbon black; self-heating;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4121-:d:281248. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.