IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i21p4079-d280435.html
   My bibliography  Save this article

Distribution Network Model Platform: A First Case Study

Author

Listed:
  • Mirna Grzanic

    (European Commission, Joint Research Centre (JRC), Directorate of Energy, Transport and Climate, Energy Security, Distribution and Markets Unit, via E. Fermi 2749, I-21027 Ispra (VA), Italy
    Faculty of Electrical Engineering and Computing, University of Zagreb, 10 000 Zagreb, Croatia)

  • Marco Giacomo Flammini

    (European Commission, Joint Research Centre (JRC), Directorate of Energy, Transport and Climate, Energy Security, Distribution and Markets Unit, via E. Fermi 2749, I-21027 Ispra (VA), Italy
    Dipartimento Energia “Galileo Ferraris”, Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Torino, Italy)

  • Giuseppe Prettico

    (European Commission, Joint Research Centre (JRC), Directorate of Energy, Transport and Climate, Energy Security, Distribution and Markets Unit, via E. Fermi 2749, I-21027 Ispra (VA), Italy)

Abstract

Decarbonisation policies have recently seen an uncontrolled increase in local electricity production from renewable energy sources (RES) at distribution level. As a consequence, bidirectional power flows might cause high voltage/ medium voltage (HV/MV) transformers to overload. Additionally, not-well-planned installation of electric vehicle (EV) charging stations could provoke voltage deviations and cables overloading during peak times. To ensure secure and reliable distribution network operations, technology integration requires careful analysis which is based on realistic distribution grid models (DGM). Currently, however, only not geo-referenced synthetic grids are available inliterature. This fact unfortunately represents a big limitation. In order to overcome this knowledge gap, we developed a distribution network model (DiNeMo) web-platform aiming at reproducing the DGM of a given area of interest. DiNeMo is based on metrics and indicators collected from 99 unbundled distribution system operators (DSOs) in Europe. In this work we firstly perform a validation exercise on two DGMs of the city of Varaždin in Croatia. To this aim, a set of indicators from the DGMs and from the real networks are compared. The DGMs are later used for a power flow analysis which focuses on voltage fluctuations, line losses, and lines loading considering different levels of EV charging stations penetration.

Suggested Citation

  • Mirna Grzanic & Marco Giacomo Flammini & Giuseppe Prettico, 2019. "Distribution Network Model Platform: A First Case Study," Energies, MDPI, vol. 12(21), pages 1-17, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4079-:d:280435
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/21/4079/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/21/4079/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Jun & He, Lifu & Fu, Siyao, 2014. "An improved PSO-based charging strategy of electric vehicles in electrical distribution grid," Applied Energy, Elsevier, vol. 128(C), pages 82-92.
    2. Adam B. Birchfield & Eran Schweitzer & Mir Hadi Athari & Ti Xu & Thomas J. Overbye & Anna Scaglione & Zhifang Wang, 2017. "A Metric-Based Validation Process to Assess the Realism of Synthetic Power Grids," Energies, MDPI, vol. 10(8), pages 1-14, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duško Bekut & Goran Švenda & Sonja Kanjuh & Verica Koturević, 2024. "Generalized Distribution Network Data-Gathering Procedure for ADMS Deployment," Energies, MDPI, vol. 17(23), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harasis, Salman & Khan, Irfan & Massoud, Ahmed, 2024. "Enabling large-scale integration of electric bus fleets in harsh environments: Possibilities, potentials, and challenges," Energy, Elsevier, vol. 300(C).
    2. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
    3. Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    4. García-Villalobos, J. & Zamora, I. & Knezović, K. & Marinelli, M., 2016. "Multi-objective optimization control of plug-in electric vehicles in low voltage distribution networks," Applied Energy, Elsevier, vol. 180(C), pages 155-168.
    5. Pavić, Ivan & Capuder, Tomislav & Kuzle, Igor, 2016. "Low carbon technologies as providers of operational flexibility in future power systems," Applied Energy, Elsevier, vol. 168(C), pages 724-738.
    6. Park, Keonwoo & Moon, Ilkyeong, 2022. "Multi-agent deep reinforcement learning approach for EV charging scheduling in a smart grid," Applied Energy, Elsevier, vol. 328(C).
    7. Zeng, Zhiqiang & Hong, Mengna & Li, Jigeng & Man, Yi & Liu, Huanbin & Li, Zeeman & Zhang, Huanhuan, 2018. "Integrating process optimization with energy-efficiency scheduling to save energy for paper mills," Applied Energy, Elsevier, vol. 225(C), pages 542-558.
    8. Jian, Linni & Zheng, Yanchong & Xiao, Xinping & Chan, C.C., 2015. "Optimal scheduling for vehicle-to-grid operation with stochastic connection of plug-in electric vehicles to smart grid," Applied Energy, Elsevier, vol. 146(C), pages 150-161.
    9. Xiaolin Chu & Dong Yang & Jia Li, 2019. "Sustainability Assessment of Combined Cooling, Heating, and Power Systems under Carbon Emission Regulations," Sustainability, MDPI, vol. 11(21), pages 1-17, October.
    10. Jian, Linni & Zheng, Yanchong & Shao, Ziyun, 2017. "High efficient valley-filling strategy for centralized coordinated charging of large-scale electric vehicles," Applied Energy, Elsevier, vol. 186(P1), pages 46-55.
    11. Gaizka Saldaña & Jose Ignacio San Martin & Inmaculada Zamora & Francisco Javier Asensio & Oier Oñederra, 2019. "Electric Vehicle into the Grid: Charging Methodologies Aimed at Providing Ancillary Services Considering Battery Degradation," Energies, MDPI, vol. 12(12), pages 1-37, June.
    12. Wei Li & Jiekai Shi & Hanyun Zhou, 2024. "Coordinated Charging Scheduling Approach for Plug-In Hybrid Electric Vehicles Considering Multi-Objective Weighting Control in a Large-Scale Future Smart Grid," Energies, MDPI, vol. 17(13), pages 1-17, June.
    13. Flores, Robert J. & Shaffer, Brendan P. & Brouwer, Jacob, 2017. "Electricity costs for a Level 3 electric vehicle fueling station integrated with a building," Applied Energy, Elsevier, vol. 191(C), pages 367-384.
    14. Yang, Zhile & Li, Kang & Foley, Aoife, 2015. "Computational scheduling methods for integrating plug-in electric vehicles with power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 396-416.
    15. Tao, Ye & Huang, Miaohua & Chen, Yupu & Yang, Lan, 2020. "Orderly charging strategy of battery electric vehicle driven by real-world driving data," Energy, Elsevier, vol. 193(C).
    16. Jun Yang & Jiejun Chen & Lei Chen & Feng Wang & Peiyuan Xie & Cilin Zeng, 2016. "A Regional Time-of-Use Electricity Price Based Optimal Charging Strategy for Electrical Vehicles," Energies, MDPI, vol. 9(9), pages 1-18, August.
    17. Wang, Yubo & Shi, Wenbo & Wang, Bin & Chu, Chi-Cheng & Gadh, Rajit, 2017. "Optimal operation of stationary and mobile batteries in distribution grids," Applied Energy, Elsevier, vol. 190(C), pages 1289-1301.
    18. Ruifeng Shi & Jie Zhang & Hao Su & Zihang Liang & Kwang Y. Lee, 2020. "An Economic Penalty Scheme for Optimal Parking Lot Utilization with EV Charging Requirements," Energies, MDPI, vol. 13(22), pages 1-21, November.
    19. Zhou, Kaile & Cheng, Lexin & Wen, Lulu & Lu, Xinhui & Ding, Tao, 2020. "A coordinated charging scheduling method for electric vehicles considering different charging demands," Energy, Elsevier, vol. 213(C).
    20. Yin, Wanjun & Jia, Leilei & Ji, Jianbo, 2024. "Energy optimal scheduling strategy considering V2G characteristics of electric vehicle," Energy, Elsevier, vol. 294(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4079-:d:280435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.