IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i20p4009-d278945.html
   My bibliography  Save this article

Control Strategy of Intergrated Photovoltaic-UPQC System for DC-Bus Voltage Stability and Voltage Sags Compensation

Author

Listed:
  • Dongsheng Yang

    (College of Information Science and Engineering, Northeastern University, Shenyang 110819, China)

  • Zhanchao Ma

    (College of Information Science and Engineering, Northeastern University, Shenyang 110819, China)

  • Xiaoting Gao

    (College of Information Science and Engineering, Northeastern University, Shenyang 110819, China)

  • Zhuang Ma

    (State Grid Shenyang Electric Power Supply Company, Shenyang 110811, China; zhuang mild@163.com)

  • Enchang Cui

    (College of Information Science and Engineering, Northeastern University, Shenyang 110819, China)

Abstract

Power quality problem, because of its various forms and occurrence frequency, has become one of the most critical challenges confronted by a power system. Meanwhile, the development of renewable energy has led to more demands for an integrated system that combines both merits of sustainable energy generation and power quality improvement. In this context, this paper discusses an integrated photovoltaic-unified power quality conditioner (PV-UPQC) and its control strategy. The system is composed of a series compensator, shunt compensator, dc-bus, and photovoltaic array, which conducts an integration of photovoltaic generation and power quality mitigation. The fuzzy adaptive PI controller and the improved Maximum Power Point Tracking (MPPT) technique are proposed to enhance the stability of dc-bus voltage, which is aimed at the power balance and steady operation of the whole system. Additionally, the coordinate control strategy is studied in order to ensure the normal operation and compensation performance of the system under severe voltage sag condition. In comparison to the existing PV-UPQC system, the proposed control method could improve the performance of dc-bus stability and the compensation ability. The dynamic behavior of the integrated system were verified by simulation in MATLAB and PLECS. Selected results are reported to show that the dc-bus voltage was stable and increased under severe situations, which validates the effectiveness of the proposed integrated PV-UPQC system and its control strategy.

Suggested Citation

  • Dongsheng Yang & Zhanchao Ma & Xiaoting Gao & Zhuang Ma & Enchang Cui, 2019. "Control Strategy of Intergrated Photovoltaic-UPQC System for DC-Bus Voltage Stability and Voltage Sags Compensation," Energies, MDPI, vol. 12(20), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:4009-:d:278945
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/20/4009/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/20/4009/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kow, Ken Weng & Wong, Yee Wan & Rajkumar, Rajparthiban Kumar & Rajkumar, Rajprasad Kumar, 2016. "A review on performance of artificial intelligence and conventional method in mitigating PV grid-tied related power quality events," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 334-346.
    2. Francisco G. Montoya & Raul Baños & Alfredo Alcayde & Maria G. Montoya & Francisco Manzano-Agugliaro, 2018. "Power Quality: Scientific Collaboration Networks and Research Trends," Energies, MDPI, vol. 11(8), pages 1-16, August.
    3. Desmon Petrus Simatupang & Jaeho Choi, 2018. "Integrated Photovoltaic Inverters Based on Unified Power Quality Conditioner with Voltage Compensation for Submarine Distribution System," Energies, MDPI, vol. 11(11), pages 1-22, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaojun Zhao & Xiuhui Chai & Xiaoqiang Guo & Ahmad Waseem & Xiaohuan Wang & Chunjiang Zhang, 2021. "Impedance Matching-Based Power Flow Analysis for UPQC in Three-Phase Four-Wire Systems," Energies, MDPI, vol. 14(9), pages 1-17, May.
    2. Thomas Geury & Sonia Ferreira Pinto & Johan Gyselinck & Patrick Wheeler, 2020. "Indirect Matrix Converter-Based Grid-Tied Photovoltaics System for Smart Grids," Energies, MDPI, vol. 13(20), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco G. Montoya & Raúl Baños & Alfredo Alcayde & Francisco Manuel Arrabal-Campos & Javier Roldán Pérez, 2021. "Geometric Algebra Framework Applied to Symmetrical Balanced Three-Phase Systems for Sinusoidal and Non-Sinusoidal Voltage Supply," Mathematics, MDPI, vol. 9(11), pages 1-17, May.
    2. Esther Salmerón-Manzano & Francisco Manzano-Agugliaro, 2018. "The Higher Education Sustainability through Virtual Laboratories: The Spanish University as Case of Study," Sustainability, MDPI, vol. 10(11), pages 1-22, November.
    3. Coelho, Igor M. & Coelho, Vitor N. & Luz, Eduardo J. da S. & Ochi, Luiz S. & Guimarães, Frederico G. & Rios, Eyder, 2017. "A GPU deep learning metaheuristic based model for time series forecasting," Applied Energy, Elsevier, vol. 201(C), pages 412-418.
    4. Mahmud, Nasif & Zahedi, A., 2016. "Review of control strategies for voltage regulation of the smart distribution network with high penetration of renewable distributed generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 582-595.
    5. Gupta, Akhil, 2022. "Power quality evaluation of photovoltaic grid interfaced cascaded H-bridge nine-level multilevel inverter systems using D-STATCOM and UPQC," Energy, Elsevier, vol. 238(PB).
    6. Paula Remigio-Carmona & Juan-José González-de-la-Rosa & Olivia Florencias-Oliveros & José-María Sierra-Fernández & Javier Fernández-Morales & Manuel-Jesús Espinosa-Gavira & Agustín Agüera-Pérez & José, 2022. "Current Status and Future Trends of Power Quality Analysis," Energies, MDPI, vol. 15(7), pages 1-18, March.
    7. Jannesar, Mohammad Rasol & Sedighi, Alireza & Savaghebi, Mehdi & Guerrero, Josep M., 2018. "Optimal placement, sizing, and daily charge/discharge of battery energy storage in low voltage distribution network with high photovoltaic penetration," Applied Energy, Elsevier, vol. 226(C), pages 957-966.
    8. Misael Lopez-Ramirez & Eduardo Cabal-Yepez & Luis M. Ledesma-Carrillo & Homero Miranda-Vidales & Carlos Rodriguez-Donate & Rocio A. Lizarraga-Morales, 2018. "FPGA-Based Online PQD Detection and Classification through DWT, Mathematical Morphology and SVD," Energies, MDPI, vol. 11(4), pages 1-15, March.
    9. Vavilapalli, Sridhar & Umashankar, S. & Sanjeevikumar, P. & Ramachandaramurthy, Vigna K. & Mihet-Popa, Lucian & Fedák, Viliam, 2018. "Three-stage control architecture for cascaded H-Bridge inverters in large-scale PV systems – Real time simulation validation," Applied Energy, Elsevier, vol. 229(C), pages 1111-1127.
    10. Muttqi, Kashem M. & Aghaei, Jamshid & Askarpour, Mohammad & Ganapathy, Velappa, 2017. "Minimizing the steady-state impediments to solar photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1329-1345.
    11. Boza, Pal & Evgeniou, Theodoros, 2021. "Artificial intelligence to support the integration of variable renewable energy sources to the power system," Applied Energy, Elsevier, vol. 290(C).
    12. Castilla Manuel V. & Martin Francisco, 2021. "A Powerful Tool for Optimal Control of Energy Systems in Sustainable Buildings: Distortion Power Bivector," Energies, MDPI, vol. 14(8), pages 1-17, April.
    13. Sridhar, V. & Umashankar, S., 2017. "A comprehensive review on CHB MLI based PV inverter and feasibility study of CHB MLI based PV-STATCOM," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 138-156.
    14. Paweł Pijarski & Piotr Kacejko & Marek Wancerz, 2022. "Voltage Control in MV Network with Distributed Generation—Possibilities of Real Quality Enhancement," Energies, MDPI, vol. 15(6), pages 1-22, March.
    15. Matej Žnidarec & Zvonimir Klaić & Damir Šljivac & Boris Dumnić, 2019. "Harmonic Distortion Prediction Model of a Grid-Tie Photovoltaic Inverter Using an Artificial Neural Network," Energies, MDPI, vol. 12(5), pages 1-19, February.
    16. Shivashankar, S. & Mekhilef, Saad & Mokhlis, Hazlie & Karimi, M., 2016. "Mitigating methods of power fluctuation of photovoltaic (PV) sources – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1170-1184.
    17. Artvin-Darien Gonzalez-Abreu & Miguel Delgado-Prieto & Roque-Alfredo Osornio-Rios & Juan-Jose Saucedo-Dorantes & Rene-de-Jesus Romero-Troncoso, 2021. "A Novel Deep Learning-Based Diagnosis Method Applied to Power Quality Disturbances," Energies, MDPI, vol. 14(10), pages 1-17, May.
    18. Wajahat Ullah Khan Tareen & Muhammad Aamir & Saad Mekhilef & Mutsuo Nakaoka & Mehdi Seyedmahmoudian & Ben Horan & Mudasir Ahmed Memon & Nauman Anwar Baig, 2018. "Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review," Energies, MDPI, vol. 11(6), pages 1-41, June.
    19. Francisco G. Montoya & Raul Baños & Alfredo Alcayde & Maria G. Montoya & Francisco Manzano-Agugliaro, 2018. "Power Quality: Scientific Collaboration Networks and Research Trends," Energies, MDPI, vol. 11(8), pages 1-16, August.
    20. Mehran Ghalamchi & Alibakhsh Kasaeian & Mohammad Hossein Ahmadi & Mehrdad Ghalamchi, 2017. "Evolving ICA and HGAPSO algorithms for prediction of outlet temperatures of constructed solar chimney," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 12(2), pages 84-95.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:4009-:d:278945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.