IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i20p3922-d277119.html
   My bibliography  Save this article

RETRACTED: Blockchain-Enabled Charging Right Trading Among EV Charging Stations

Author

Listed:
  • Ruijiu Jin

    (College of Electrical Engineering, Shanghai Dianji University, Shanghai 201306, China)

  • Xiangfeng Zhang

    (College of Electrical Engineering, Shanghai Dianji University, Shanghai 201306, China)

  • Zhijie Wang

    (College of Electrical Engineering, Shanghai Dianji University, Shanghai 201306, China)

  • Wengang Sun

    (College of Urban Construction and Safety Engineering, Shanghai Institute of Technology, Shanghai 200235, China)

  • Xiaoxin Yang

    (College of Electronic, Guangxi University, Nanning 530004, China)

  • Zhong Shi

    (College of Electrical Engineering, Shanghai Dianji University, Shanghai 201306, China)

Abstract

Increasing penetration of electric vehicles (EVs) gives rise to the challenges in the secure operation of power systems. The EV charging loads should be distributed among charging stations in a fair and incentive-compatible manner while ensuring that power transmission and transformation facilities are not overloaded. This paper first proposes a charging right (or charging power ration) trading mechanism and model based on blockchain. Considering all kinds of random factors of charging station loads, we use Monte Carlo modeling to determine the charging demand of charging stations in the future. Based on the charging demand of charging stations, a charging station needs to submit the charging demand for a future period. The blockchain first distributes initial charging right in a just manner and ensures the security of facilities. Given that the charging urgency and elasticity differences vary by charging stations, all charging stations then proceed with double auction and peer-to-peer (P2P) transaction of charging right. Bids and offers are cleared via double auctions if bids are higher than offers. The remaining bids and offers are cleared via the P2P market. Then, this paper designs the charging right allocation and trading platform and smart contract based on the Ethernet blockchain to ensure the safety of the distribution network (DN) and the transparency and efficiency of charging right trading. Simulation results based on the Ethereum private blockchain show the fairness and efficiency of the proposed mechanism and the effectiveness of the method and the mechanism.

Suggested Citation

  • Ruijiu Jin & Xiangfeng Zhang & Zhijie Wang & Wengang Sun & Xiaoxin Yang & Zhong Shi, 2019. "RETRACTED: Blockchain-Enabled Charging Right Trading Among EV Charging Stations," Energies, MDPI, vol. 12(20), pages 1, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3922-:d:277119
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/20/3922/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/20/3922/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiang, Yue & Liu, Junyong & Li, Ran & Li, Furong & Gu, Chenghong & Tang, Shuoya, 2016. "Economic planning of electric vehicle charging stations considering traffic constraints and load profile templates," Applied Energy, Elsevier, vol. 178(C), pages 647-659.
    2. Marco Pasetti & Stefano Rinaldi & Alessandra Flammini & Michela Longo & Federica Foiadelli, 2019. "Assessment of Electric Vehicle Charging Costs in Presence of Distributed Photovoltaic Generation and Variable Electricity Tariffs," Energies, MDPI, vol. 12(3), pages 1-20, February.
    3. Awasthi, Abhishek & Venkitusamy, Karthikeyan & Padmanaban, Sanjeevikumar & Selvamuthukumaran, Rajasekar & Blaabjerg, Frede & Singh, Asheesh K., 2017. "Optimal planning of electric vehicle charging station at the distribution system using hybrid optimization algorithm," Energy, Elsevier, vol. 133(C), pages 70-78.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lukáš Dvořáček & Martin Horák & Michaela Valentová & Jaroslav Knápek, 2020. "Optimization of Electric Vehicle Charging Points Based on Efficient Use of Chargers and Providing Private Charging Spaces," Energies, MDPI, vol. 13(24), pages 1-28, December.
    2. Energies Editorial Office, 2020. "RETRACTED: Jin et al. Blockchain-Enabled Charging Right Trading Among EV Charging Stations. Energies 2019, 12 , 3922," Energies, MDPI, vol. 13(21), pages 1-1, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Guangyou & Zhu, Zhiwei & Luo, Sumei, 2022. "Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm," Energy, Elsevier, vol. 247(C).
    2. Ferro, G. & Minciardi, R. & Robba, M., 2020. "A user equilibrium model for electric vehicles: Joint traffic and energy demand assignment," Energy, Elsevier, vol. 198(C).
    3. Miao, Hongzhi & Jia, Hongfei & Li, Jiangchen & Qiu, Tony Z., 2019. "Autonomous connected electric vehicle (ACEV)-based car-sharing system modeling and optimal planning: A unified two-stage multi-objective optimization methodology," Energy, Elsevier, vol. 169(C), pages 797-818.
    4. Luo, Lizi & Gu, Wei & Zhou, Suyang & Huang, He & Gao, Song & Han, Jun & Wu, Zhi & Dou, Xiaobo, 2018. "Optimal planning of electric vehicle charging stations comprising multi-types of charging facilities," Applied Energy, Elsevier, vol. 226(C), pages 1087-1099.
    5. Hassan S. Hayajneh & Xuewei Zhang, 2019. "Evaluation of Electric Vehicle Charging Station Network Planning via a Co-Evolution Approach," Energies, MDPI, vol. 13(1), pages 1-11, December.
    6. Harasis, Salman & Khan, Irfan & Massoud, Ahmed, 2024. "Enabling large-scale integration of electric bus fleets in harsh environments: Possibilities, potentials, and challenges," Energy, Elsevier, vol. 300(C).
    7. Zhang, Yue & Zhang, Qi & Farnoosh, Arash & Chen, Siyuan & Li, Yan, 2019. "GIS-Based Multi-Objective Particle Swarm Optimization of charging stations for electric vehicles," Energy, Elsevier, vol. 169(C), pages 844-853.
    8. Natascia Andrenacci & Roberto Ragona & Antonino Genovese, 2020. "Evaluation of the Instantaneous Power Demand of an Electric Charging Station in an Urban Scenario," Energies, MDPI, vol. 13(11), pages 1-19, May.
    9. Davide Della Giustina & Stefano Rinaldi & Stefano Robustelli & Andrea Angioni, 2021. "Massive Generation of Customer Load Profiles for Large Scale State Estimation Deployment: An Approach to Exploit AMI Limited Data," Energies, MDPI, vol. 14(5), pages 1-26, February.
    10. Morro-Mello, Igoor & Padilha-Feltrin, Antonio & Melo, Joel D. & Heymann, Fabian, 2021. "Spatial connection cost minimization of EV fast charging stations in electric distribution networks using local search and graph theory," Energy, Elsevier, vol. 235(C).
    11. Bryam Paúl Lojano-Riera & Carlos Flores-Vázquez & Juan-Carlos Cobos-Torres & David Vallejo-Ramírez & Daniel Icaza, 2023. "Electromobility with Photovoltaic Generation in an Andean City," Energies, MDPI, vol. 16(15), pages 1-16, July.
    12. Viktor Slednev & Patrick Jochem & Wolf Fichtner, 2022. "Impacts of electric vehicles on the European high and extra high voltage power grid," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 824-837, June.
    13. Li, Bin & Dong, Xujun & Wen, Jianghui, 2022. "Cooperative-driving control for mixed fleets at wireless charging sections for lane changing behaviour," Energy, Elsevier, vol. 243(C).
    14. Sanchari Deb & Kari Tammi & Karuna Kalita & Pinakeswar Mahanta, 2018. "Review of recent trends in charging infrastructure planning for electric vehicles," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(6), November.
    15. Poyrazoglu, Gokturk & Coban, Elvin, 2021. "A stochastic value estimation tool for electric vehicle charging points," Energy, Elsevier, vol. 227(C).
    16. Wang, Yue & Shi, Jianmai & Wang, Rui & Liu, Zhong & Wang, Ling, 2018. "Siting and sizing of fast charging stations in highway network with budget constraint," Applied Energy, Elsevier, vol. 228(C), pages 1255-1271.
    17. Zhi Wu & Yuxuan Zhuang & Suyang Zhou & Shuning Xu & Peng Yu & Jinqiao Du & Xiner Luo & Ghulam Abbas, 2020. "Bi-Level Planning of Multi-Functional Vehicle Charging Stations Considering Land Use Types," Energies, MDPI, vol. 13(5), pages 1-17, March.
    18. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    19. Jun Bi & Yongxing Wang & Shuai Sun & Wei Guan, 2018. "Predicting Charging Time of Battery Electric Vehicles Based on Regression and Time-Series Methods: A Case Study of Beijing," Energies, MDPI, vol. 11(5), pages 1-18, April.
    20. Xiang, Yue & Jiang, Zhuozhen & Gu, Chenghong & Teng, Fei & Wei, Xiangyu & Wang, Yang, 2019. "Electric vehicle charging in smart grid: A spatial-temporal simulation method," Energy, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3922-:d:277119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.