IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i19p3795-d274120.html
   My bibliography  Save this article

Numerical Investigation of Downhole Perforation Pressure for a Deepwater Well

Author

Listed:
  • Qiao Deng

    (College of Petroleum Engineering, China University of Petroleum-Beijing, 18 Fuxue Road, Changping 102249, China)

  • Hui Zhang

    (College of Petroleum Engineering, China University of Petroleum-Beijing, 18 Fuxue Road, Changping 102249, China)

  • Jun Li

    (College of Petroleum Engineering, China University of Petroleum-Beijing, 18 Fuxue Road, Changping 102249, China)

  • Xuejun Hou

    (School of Petroleum Engineering, Chongqing University of Science & Technology, 20 East Road, University City, Shapingba District, Chongqing 401331, China)

  • Binxing Zhao

    (School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China)

Abstract

During the production of deepwater wells, downhole perforation safety is one of the key technical problems. The perforation fluctuating pressure is an important factor in assessing the wellbore safety threat. Due to difficulty in describing the downhole perforation pressure by using the existing empirical correlations, a prediction model based on data fitting of a large number of numerical simulations has been proposed. Firstly, a numerical model is set up to obtain the dynamic data of downhole perforation, and the exponential attenuation model of perforation pressure in the wellbore is established. Secondly, a large number of numerical simulations have been carried out through orthogonal test design. The results reveal that the downhole perforation pressure is logarithmic to the total charge quantity, increases linearly to the wellbore initial pressure, shows an exponential relationship with downhole effective volume for perforation, and has a power relationship with the thickness of casing and cement as well as formation elastic modulus. Thirdly, the prediction of perforation peak pressure at different positions along the wellbore agrees well with the field measurement within a 10% error. Finally, the results of this study have been applied in the field case, and an optimization scheme for deepwater downhole perforation safety has been put forward.

Suggested Citation

  • Qiao Deng & Hui Zhang & Jun Li & Xuejun Hou & Binxing Zhao, 2019. "Numerical Investigation of Downhole Perforation Pressure for a Deepwater Well," Energies, MDPI, vol. 12(19), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3795-:d:274120
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/19/3795/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/19/3795/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paul E. Brockway & Anne Owen & Lina I. Brand-Correa & Lukas Hardt, 2019. "Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources," Nature Energy, Nature, vol. 4(7), pages 612-621, July.
    2. Qiao Deng & Hui Zhang & Jun Li & Xuejun Hou & Hao Wang, 2019. "Study of Downhole Shock Loads for Ultra-Deep Well Perforation and Optimization Measures," Energies, MDPI, vol. 12(14), pages 1-23, July.
    3. Qiu, Qingan & Cui, Lirong, 2019. "Optimal mission abort policy for systems subject to random shocks based on virtual age process," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 11-20.
    4. Yan Xi & Jun Li & Gonghui Liu & Jianping Li & Jiwei Jiang, 2019. "Mechanisms and Influence of Casing Shear Deformation near the Casing Shoe, Based on MFC Surveys during Multistage Fracturing in Shale Gas Wells in Canada," Energies, MDPI, vol. 12(3), pages 1-22, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reza Rezaee, 2022. "Editorial on Special Issues of Development of Unconventional Reservoirs," Energies, MDPI, vol. 15(7), pages 1-9, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Melkie Getnet Tadesse & Esubalew Kasaw & Biruk Fentahun & Emil Loghin & Jörn Felix Lübben, 2022. "Banana Peel and Conductive Polymers-Based Flexible Supercapacitors for Energy Harvesting and Storage," Energies, MDPI, vol. 15(7), pages 1-20, March.
    2. Hossain, Mohammad Razib & Singh, Sanjeet & Sharma, Gagan Deep & Apostu, Simona-Andreea & Bansal, Pooja, 2023. "Overcoming the shock of energy depletion for energy policy? Tracing the missing link between energy depletion, renewable energy development and decarbonization in the USA," Energy Policy, Elsevier, vol. 174(C).
    3. Zeke Marshall & Paul E. Brockway, 2020. "A Net Energy Analysis of the Global Agriculture, Aquaculture, Fishing and Forestry System," Biophysical Economics and Resource Quality, Springer, vol. 5(2), pages 1-27, June.
    4. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "Mission abort policy optimization for series systems with overlapping primary and rescue subsystems operating in a random environment," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    5. Jonathan Dumas & Antoine Dubois & Paolo Thiran & Pierre Jacques & Francesco Contino & Bertrand Cornélusse & Gauthier Limpens, 2022. "The Energy Return on Investment of Whole-Energy Systems: Application to Belgium," Biophysical Economics and Resource Quality, Springer, vol. 7(4), pages 1-34, December.
    6. Zhao, Xian & He, Zongda & Wu, Yaguang & Qiu, Qingan, 2022. "Joint optimization of condition-based performance control and maintenance policies for mission-critical systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    7. Charles Guay-Boutet, 2023. "Estimating the Disaggregated Standard EROI of Canadian Oil Sands Extracted via Open-pit Mining, 1997–2016," Biophysical Economics and Resource Quality, Springer, vol. 8(1), pages 1-21, March.
    8. Hong, Sanghyun & Kim, Eunsung & Jeong, Saerok, 2023. "Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea," Renewable Energy, Elsevier, vol. 204(C), pages 485-492.
    9. Yang, Wei-Wei & Tang, Xin-Yuan & Ma, Xu & Li, Jia-Chen & Xu, Chao & He, Ya-Ling, 2023. "Rapid prediction, optimization and design of solar membrane reactor by data-driven surrogate model," Energy, Elsevier, vol. 285(C).
    10. Jakub Frankowski & Wojciech Czekała, 2023. "Agricultural Plant Residues as Potential Co-Substrates for Biogas Production," Energies, MDPI, vol. 16(11), pages 1-14, May.
    11. Marek Krok & Paweł Majewski & Wojciech P. Hunek & Tomasz Feliks, 2022. "Energy Optimization of the Continuous-Time Perfect Control Algorithm," Energies, MDPI, vol. 15(4), pages 1-13, February.
    12. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2023. "Optimal aborting policy for shock exposed missions with random rescue time," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    13. Jacques, Pierre & Delannoy, Louis & Andrieu, Baptiste & Yilmaz, Devrim & Jeanmart, Hervé & Godin, Antoine, 2023. "Assessing the economic consequences of an energy transition through a biophysical stock-flow consistent model," Ecological Economics, Elsevier, vol. 209(C).
    14. Zhao, Qin & Li, Pengcheng & Zhang, Houcheng, 2024. "Dually boosting the performance of photovoltaic module via integrating elastocaloric cooler," Energy, Elsevier, vol. 295(C).
    15. Chengye Ma & Yongjun Du & Lijun Shang & Li Yang & Kaiye Gao, 2023. "Random Maintenance Strategy Modeling of Warranted Products with Reliability Heterogeneity," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    16. Fang, Chen & Chen, Jianhui & Qiu, Daizhen, 2024. "Reliability modeling for balanced systems considering mission abort policies," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    17. Kivevele, Thomas & Kichonge, Baraka, 2024. "Techno-economic evaluation of transesterification processes for biodiesel production from low quality non-edible feedstocks: Process design and simulation," Energy, Elsevier, vol. 297(C).
    18. Salaheldin Elkatatny, 2019. "Development of a Homogenous Cement Slurry Using Synthetic Modified Phyllosilicate while Cementing HPHT Wells," Sustainability, MDPI, vol. 11(7), pages 1-14, March.
    19. Rui Yan & Haotong Tian & Kaiye Gao & Rui Peng & Bin Liu, 2023. "A two-stage UAV routing problem with time window considering rescheduling with random delivery reliability," Journal of Risk and Reliability, , vol. 237(4), pages 781-797, August.
    20. Levitin, Gregory & Xing, Liudong & Xiang, Yanping & Dai, Yuanshun, 2021. "Mixed failure-driven and shock-driven mission aborts in heterogeneous systems with arbitrary structure," Reliability Engineering and System Safety, Elsevier, vol. 212(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3795-:d:274120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.