IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i19p3701-d271570.html
   My bibliography  Save this article

Welfare Maximization-Based Distributed Demand Response for Islanded Multi-Microgrid Networks Using Diffusion Strategy

Author

Listed:
  • Haesum Ali

    (Department of Electrical Engineering, Incheon National University, 12-1 Songdo-dong, Yeonsu-gu, Incheon 406840, Korea)

  • Akhtar Hussain

    (Department of Electrical Engineering, Incheon National University, 12-1 Songdo-dong, Yeonsu-gu, Incheon 406840, Korea
    Research Institute for Northeast Asian Super Grid, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea)

  • Van-Hai Bui

    (Department of Electrical Engineering, Incheon National University, 12-1 Songdo-dong, Yeonsu-gu, Incheon 406840, Korea)

  • Jinhong Jeon

    (Division of Smart Distribution Research Center, Korea Electrotechnology Research Institute, Changwon 51543, Korea)

  • Hak-Man Kim

    (Department of Electrical Engineering, Incheon National University, 12-1 Songdo-dong, Yeonsu-gu, Incheon 406840, Korea
    Research Institute for Northeast Asian Super Grid, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea)

Abstract

Integration of demand response programs in microgrids can be beneficial for both the microgrid owners and the consumers. The demand response programs are generally triggered by market price signals to reduce the peak load demand. However, during islanded mode, due to the absence of connection with the utility grid, the market price signals are not available. Therefore, in this study, we have proposed a distributed demand response program for an islanded multi-microgrid network, which is not triggered by market price signals. The proposed distributed demand response program is based on welfare maximization of the network. Based on the welfare function of individual microgrids, the optimal power is allocated to the microgrids of the network in two steps. In the first step, the total surplus power and shortage power of the network is determined in a distributed way by using the local surplus/shortage information of each microgrid, which is computed after local optimization. In the second step, the total surplus of the network is allocated to the microgrids having shortage power based on their welfare functions. Finally, the allocated power amount and the initial shortage amount in the microgrid is used to determine the amount of load to be curtailed. Diffusion strategy is used in both the first and the second steps and the performance of the proposed method is compared with the widely used consensus method. Simulation results have proved the effectiveness of the proposed method for realizing distributed demand response for islanded microgrid networks.

Suggested Citation

  • Haesum Ali & Akhtar Hussain & Van-Hai Bui & Jinhong Jeon & Hak-Man Kim, 2019. "Welfare Maximization-Based Distributed Demand Response for Islanded Multi-Microgrid Networks Using Diffusion Strategy," Energies, MDPI, vol. 12(19), pages 1-18, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3701-:d:271570
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/19/3701/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/19/3701/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sung-Ho Park & Akhtar Hussain & Hak-Man Kim, 2019. "Impact Analysis of Survivability-Oriented Demand Response on Islanded Operation of Networked Microgrids with High Penetration of Renewables," Energies, MDPI, vol. 12(3), pages 1-22, January.
    2. Van-Hai Bui & Akhtar Hussain & Hak-Man Kim, 2017. "Diffusion Strategy-Based Distributed Operation of Microgrids Using Multiagent System," Energies, MDPI, vol. 10(7), pages 1-21, July.
    3. Hee-Jun Cha & Dong-Jun Won & Sang-Hyuk Kim & Il-Yop Chung & Byung-Moon Han, 2015. "Multi-Agent System-Based Microgrid Operation Strategy for Demand Response," Energies, MDPI, vol. 8(12), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asfand Yar Ali & Akhtar Hussain & Ju-Won Baek & Hak-Man Kim, 2020. "Optimal Operation of Networked Microgrids for Enhancing Resilience Using Mobile Electric Vehicles," Energies, MDPI, vol. 14(1), pages 1-20, December.
    2. Tostado-Véliz, Marcos & Kamel, Salah & Hasanien, Hany M. & Turky, Rania A. & Jurado, Francisco, 2022. "Uncertainty-aware day-ahead scheduling of microgrids considering response fatigue: An IGDT approach," Applied Energy, Elsevier, vol. 310(C).
    3. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    4. Amrutha Raju Battula & Sandeep Vuddanti & Surender Reddy Salkuti, 2021. "Review of Energy Management System Approaches in Microgrids," Energies, MDPI, vol. 14(17), pages 1-32, September.
    5. Costa, Vinicius B.F. & Bonatto, Benedito D. & Silva, Patrícia F., 2022. "Optimizing Brazil's regulated electricity market in the context of time-of-use rates and prosumers with energy storage systems," Utilities Policy, Elsevier, vol. 79(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mansour-Saatloo, Amin & Pezhmani, Yasin & Mirzaei, Mohammad Amin & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Marzband, Mousa & Anvari-Moghaddam, Amjad, 2021. "Robust decentralized optimization of Multi-Microgrids integrated with Power-to-X technologies," Applied Energy, Elsevier, vol. 304(C).
    2. Woltmann, Stefan & Kittel, Julia, 2022. "Development and implementation of multi-agent systems for demand response aggregators in an industrial context," Applied Energy, Elsevier, vol. 314(C).
    3. Fan, Dongming & Ren, Yi & Feng, Qiang & Liu, Yiliu & Wang, Zili & Lin, Jing, 2021. "Restoration of smart grids: Current status, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    4. K/bidi, Fabrice & Damour, Cedric & Grondin, Dominique & Hilairet, Mickaël & Benne, Michel, 2022. "Multistage power and energy management strategy for hybrid microgrid with photovoltaic production and hydrogen storage," Applied Energy, Elsevier, vol. 323(C).
    5. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    6. Iulia Stamatescu & Nicoleta Arghira & Ioana Făgărăşan & Grigore Stamatescu & Sergiu Stelian Iliescu & Vasile Calofir, 2017. "Decision Support System for a Low Voltage Renewable Energy System," Energies, MDPI, vol. 10(1), pages 1-15, January.
    7. V, Kavitha & V, Malathi & Guerrero, Josep M. & Bazmohammadi, Najmeh, 2022. "Energy management system using Mimosa Pudica optimization technique for microgrid applications," Energy, Elsevier, vol. 244(PA).
    8. Mayank Singh & Rakesh Chandra Jha, 2019. "Object-Oriented Usability Indices for Multi-Objective Demand Side Management Using Teaching-Learning Based Optimization," Energies, MDPI, vol. 12(3), pages 1-25, January.
    9. Anh-Duc Nguyen & Van-Hai Bui & Akhtar Hussain & Duc-Huy Nguyen & Hak-Man Kim, 2018. "Impact of Demand Response Programs on Optimal Operation of Multi-Microgrid System," Energies, MDPI, vol. 11(6), pages 1-18, June.
    10. Zhilin Lyu & Xiao Yang & Yiyi Zhang & Junhui Zhao, 2020. "Bi-Level Optimal Strategy of Islanded Multi-Microgrid Systems Based on Optimal Power Flow and Consensus Algorithm," Energies, MDPI, vol. 13(7), pages 1-19, March.
    11. Akhtar Hussain & Van-Hai Bui & Hak-Man Kim, 2017. "Impact Analysis of Demand Response Intensity and Energy Storage Size on Operation of Networked Microgrids," Energies, MDPI, vol. 10(7), pages 1-19, June.
    12. Stephanus Antonius Ananda & Jyh-Cherng Gu & Ming-Ta Yang & Jing-Min Wang & Jun-Da Chen & Yung-Ruei Chang & Yih-Der Lee & Chen-Min Chan & Chia-Hao Hsu, 2016. "Multi-Agent System Fault Protection with Topology Identification in Microgrids," Energies, MDPI, vol. 10(1), pages 1-21, December.
    13. Van-Hai Bui & Akhtar Hussain & Hak-Man Kim, 2017. "Diffusion Strategy-Based Distributed Operation of Microgrids Using Multiagent System," Energies, MDPI, vol. 10(7), pages 1-21, July.
    14. Su-Been Hong & Thai-Thanh Nguyen & Jinhong Jeon & Hak-Man Kim, 2020. "Distributed Operation of Microgrids Considering Secondary Frequency Restoration Based on the Diffusion Algorithm," Energies, MDPI, vol. 13(12), pages 1-14, June.
    15. Amrutha Raju Battula & Sandeep Vuddanti & Surender Reddy Salkuti, 2021. "Review of Energy Management System Approaches in Microgrids," Energies, MDPI, vol. 14(17), pages 1-32, September.
    16. Kaveh Dehghanpour & Christopher Colson & Hashem Nehrir, 2017. "A Survey on Smart Agent-Based Microgrids for Resilient/Self-Healing Grids," Energies, MDPI, vol. 10(5), pages 1-25, May.
    17. Yuan Hong & Shengbin Wang & Ziyue Huang, 2017. "Efficient Energy Consumption Scheduling: Towards Effective Load Leveling," Energies, MDPI, vol. 10(1), pages 1-27, January.
    18. Bui, Van-Hai & Hussain, Akhtar & Im, Yong-Hoon & Kim, Hak-Man, 2019. "An internal trading strategy for optimal energy management of combined cooling, heat and power in building microgrids," Applied Energy, Elsevier, vol. 239(C), pages 536-548.
    19. Van-Hai Bui & Akhtar Hussain & Woon-Gyu Lee & Hak-Man Kim, 2019. "Hybrid Energy Management System for Operation of Wind Farm System Considering Grid-Code Constraints," Energies, MDPI, vol. 12(24), pages 1-19, December.
    20. Yongming Zhang & Zhe Yan & Feng Yuan & Jiawei Yao & Bao Ding, 2018. "A Novel Reconstruction Approach to Elevator Energy Conservation Based on a DC Micro-Grid in High-Rise Buildings," Energies, MDPI, vol. 12(1), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3701-:d:271570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.