IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i19p3662-d270537.html
   My bibliography  Save this article

Short-Term Bidding Strategy for a Price-Maker Virtual Power Plant Based on Interval Optimization

Author

Listed:
  • Jiakai Hu

    (Key Laboratory of Control of Power Transmission and Conversion, Ministry of Education, Shanghai Jiao Tong University (SJTU), Shanghai 200240, China)

  • Chuanwen Jiang

    (Key Laboratory of Control of Power Transmission and Conversion, Ministry of Education, Shanghai Jiao Tong University (SJTU), Shanghai 200240, China)

  • Yangyang Liu

    (School of Electrical Engineering, Nantong University, Nantong 226000, China)

Abstract

A virtual power plant is proposed to aggregate various distributed renewable resources with controllable resources to overcome the uncertainty and volatility of the renewables so as to improve market involvement. As the virtual power plant capacity becomes remarkable, it behaves as a strategic price maker rather than price taker in the market for higher profit. In this work, a two-stage bi-level bidding and scheduling model is proposed to study the virtual power plant strategic behaviors as a price maker. A mathematical problem with an equilibrium constraints-based method is applied to solve the problem by transforming the two level problem into a single level multi-integer linear problem. Considering the deficiency of computational burden and implausible assumptions of conventional stochastic optimization, we introduce interval numbers to represent the predicted output of uncertainty resources in a real-time stage. The pessimism degree-based method is utilized to order the preferences of profit intervals and tradeoff between expected profit and uncertainty. An imbalance cost mitigation mechanism is proposed in this pessimism degree-based interval optimization manner. Results show that the bidding price directly affects the cleared day ahead of the locational marginal price for higher profit. Interior conventional generators, energy storage and interruptible loads are comprehensively optimized to cover potential power shortage or profit from market. Moreover, controllable resources can decrease or even wipe out the uncertainty through the imbalance cost mitigation mechanism when the negative deviation charge is high. Finally, a sensitivity analysis reveals the effect of interval parameter setting upon optimization results. Moreover, a virtual power plant operator with a higher pessimism degree pursues higher profit with higher uncertainty.

Suggested Citation

  • Jiakai Hu & Chuanwen Jiang & Yangyang Liu, 2019. "Short-Term Bidding Strategy for a Price-Maker Virtual Power Plant Based on Interval Optimization," Energies, MDPI, vol. 12(19), pages 1-22, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3662-:d:270537
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/19/3662/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/19/3662/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tajeddini, Mohammad Amin & Rahimi-Kian, Ashkan & Soroudi, Alireza, 2014. "Risk averse optimal operation of a virtual power plant using two stage stochastic programming," Energy, Elsevier, vol. 73(C), pages 958-967.
    2. Sengupta, Atanu & Pal, Tapan Kumar, 2000. "On comparing interval numbers," European Journal of Operational Research, Elsevier, vol. 127(1), pages 28-43, November.
    3. Shayegan-Rad, Ali & Badri, Ali & Zangeneh, Ali, 2017. "Day-ahead scheduling of virtual power plant in joint energy and regulation reserve markets under uncertainties," Energy, Elsevier, vol. 121(C), pages 114-125.
    4. Gawel, Erik & Purkus, Alexandra, 2013. "Promoting the market and system integration of renewable energies through premium schemes: A case study of the German market premium," UFZ Discussion Papers 4/2013, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    5. Pandžić, Hrvoje & Morales, Juan M. & Conejo, Antonio J. & Kuzle, Igor, 2013. "Offering model for a virtual power plant based on stochastic programming," Applied Energy, Elsevier, vol. 105(C), pages 282-292.
    6. Ju, Liwei & Tan, Zhongfu & Yuan, Jinyun & Tan, Qingkun & Li, Huanhuan & Dong, Fugui, 2016. "A bi-level stochastic scheduling optimization model for a virtual power plant connected to a wind–photovoltaic–energy storage system considering the uncertainty and demand response," Applied Energy, Elsevier, vol. 171(C), pages 184-199.
    7. Howell, Shaun & Rezgui, Yacine & Hippolyte, Jean-Laurent & Jayan, Bejay & Li, Haijiang, 2017. "Towards the next generation of smart grids: Semantic and holonic multi-agent management of distributed energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 193-214.
    8. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2017. "A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 341-363.
    9. Cui, Hantao & Li, Fangxing & Hu, Qinran & Bai, Linquan & Fang, Xin, 2016. "Day-ahead coordinated operation of utility-scale electricity and natural gas networks considering demand response based virtual power plants," Applied Energy, Elsevier, vol. 176(C), pages 183-195.
    10. Gawel, Erik & Purkus, Alexandra, 2013. "Promoting the market and system integration of renewable energies through premium schemes—A case study of the German market premium," Energy Policy, Elsevier, vol. 61(C), pages 599-609.
    11. Li, Shaomao & Park, Chan S., 2018. "Wind power bidding strategy in the short-term electricity market," Energy Economics, Elsevier, vol. 75(C), pages 336-344.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zahid Ullah & Arshad & Hany Hassanin, 2022. "Modeling, Optimization, and Analysis of a Virtual Power Plant Demand Response Mechanism for the Internal Electricity Market Considering the Uncertainty of Renewable Energy Sources," Energies, MDPI, vol. 15(14), pages 1-16, July.
    2. Wafa Nafkha-Tayari & Seifeddine Ben Elghali & Ehsan Heydarian-Forushani & Mohamed Benbouzid, 2022. "Virtual Power Plants Optimization Issue: A Comprehensive Review on Methods, Solutions, and Prospects," Energies, MDPI, vol. 15(10), pages 1-20, May.
    3. Naval, Natalia & Yusta, Jose M., 2021. "Virtual power plant models and electricity markets - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naval, Natalia & Yusta, Jose M., 2021. "Virtual power plant models and electricity markets - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    2. Yu, Songyuan & Fang, Fang & Liu, Yajuan & Liu, Jizhen, 2019. "Uncertainties of virtual power plant: Problems and countermeasures," Applied Energy, Elsevier, vol. 239(C), pages 454-470.
    3. Mohammad Mohammadi Roozbehani & Ehsan Heydarian-Forushani & Saeed Hasanzadeh & Seifeddine Ben Elghali, 2022. "Virtual Power Plant Operational Strategies: Models, Markets, Optimization, Challenges, and Opportunities," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    4. Fichtner, Stephan & Meyr, Herbert, 2019. "Biogas plant optimization by increasing its exibility considering uncertain revenues," Hohenheim Discussion Papers in Business, Economics and Social Sciences 07-2019, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
    5. Amit Kumer Podder & Sayemul Islam & Nallapaneni Manoj Kumar & Aneesh A. Chand & Pulivarthi Nageswara Rao & Kushal A. Prasad & T. Logeswaran & Kabir A. Mamun, 2020. "Systematic Categorization of Optimization Strategies for Virtual Power Plants," Energies, MDPI, vol. 13(23), pages 1-46, November.
    6. Wei, Congying & Xu, Jian & Liao, Siyang & Sun, Yuanzhang & Jiang, Yibo & Ke, Deping & Zhang, Zhen & Wang, Jing, 2018. "A bi-level scheduling model for virtual power plants with aggregated thermostatically controlled loads and renewable energy," Applied Energy, Elsevier, vol. 224(C), pages 659-670.
    7. Guoqiang Sun & Weihang Qian & Wenjin Huang & Zheng Xu & Zhongxing Fu & Zhinong Wei & Sheng Chen, 2019. "Stochastic Adaptive Robust Dispatch for Virtual Power Plants Using the Binding Scenario Identification Approach," Energies, MDPI, vol. 12(10), pages 1-23, May.
    8. Hadayeghparast, Shahrzad & SoltaniNejad Farsangi, Alireza & Shayanfar, Heidarali, 2019. "Day-ahead stochastic multi-objective economic/emission operational scheduling of a large scale virtual power plant," Energy, Elsevier, vol. 172(C), pages 630-646.
    9. Zhou, Kaile & Peng, Ning & Yin, Hui & Hu, Rong, 2023. "Urban virtual power plant operation optimization with incentive-based demand response," Energy, Elsevier, vol. 282(C).
    10. Li, Qiang & Wei, Fanchao & Zhou, Yongcheng & Li, Jiajia & Zhou, Guowen & Wang, Zhonghao & Liu, Jinfu & Yan, Peigang & Yu, Daren, 2023. "A scheduling framework for VPP considering multiple uncertainties and flexible resources," Energy, Elsevier, vol. 282(C).
    11. Mahmud, Khizir & Khan, Behram & Ravishankar, Jayashri & Ahmadi, Abdollah & Siano, Pierluigi, 2020. "An internet of energy framework with distributed energy resources, prosumers and small-scale virtual power plants: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    12. Moreno, Blanca & Díaz, Guzmán, 2019. "The impact of virtual power plant technology composition on wholesale electricity prices: A comparative study of some European Union electricity markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 100-108.
    13. Karsten Neuhoff & Nils May & Jörn C. Richstein, 2018. "Renewable Energy Policy in the Age of Falling Technology Costs," Discussion Papers of DIW Berlin 1746, DIW Berlin, German Institute for Economic Research.
    14. Thomas Weyman-Jones, 2023. "Energy Price Decoupling and the Split Market Issue," Energies, MDPI, vol. 16(16), pages 1-17, August.
    15. Paraschiv, Florentina & Erni, David & Pietsch, Ralf, 2014. "The impact of renewable energies on EEX day-ahead electricity prices," Energy Policy, Elsevier, vol. 73(C), pages 196-210.
    16. Winkler, Jenny & Gaio, Alberto & Pfluger, Benjamin & Ragwitz, Mario, 2016. "Impact of renewables on electricity markets – Do support schemes matter?," Energy Policy, Elsevier, vol. 93(C), pages 157-167.
    17. Auer, Benjamin R., 2016. "How does Germany's green energy policy affect electricity market volatility? An application of conditional autoregressive range models," Energy Policy, Elsevier, vol. 98(C), pages 621-628.
    18. Marques, António Cardoso & Fuinhas, José Alberto & Menegaki, Angeliki N., 2014. "Interactions between electricity generation sources and economic activity in Greece: A VECM approach," Applied Energy, Elsevier, vol. 132(C), pages 34-46.
    19. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2016. "Stochastic profit-based scheduling of industrial virtual power plant using the best demand response strategy," Applied Energy, Elsevier, vol. 164(C), pages 590-606.
    20. Croonenbroeck, Carsten & Hennecke, David, 2020. "Does the German renewable energy act provide a fair incentive system for onshore wind power? — A simulation analysis," Energy Policy, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3662-:d:270537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.