IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v144y2020ics030142152030392x.html
   My bibliography  Save this article

Does the German renewable energy act provide a fair incentive system for onshore wind power? — A simulation analysis

Author

Listed:
  • Croonenbroeck, Carsten
  • Hennecke, David

Abstract

We assess the German renewable energy incentive system for onshore wind power installations and provide a spatial profitability analysis for any given point in Germany. As it turns out, the system seems to favor certain types of facilities, dependent on the wind conditions at the site. We therefore narrow the focus down and analyze a limited set of locations selected at random. Here, we use a simulation analysis to assess the sensitivity of profitability on wind speeds, hub heights, and turbine types. Results show that increasing hub heights are not generally increasingly profitable — on the contrary, the German incentive system rather tends to favor lower hub heights. Also, the selected turbine type still has its impact on profitability — not at a great magnitude, but nevertheless gaugeable. In conclusion, the German renewable energy support system might be somewhat off target, as it possesses possibly unwanted side effects of which policy makers may not be aware.

Suggested Citation

  • Croonenbroeck, Carsten & Hennecke, David, 2020. "Does the German renewable energy act provide a fair incentive system for onshore wind power? — A simulation analysis," Energy Policy, Elsevier, vol. 144(C).
  • Handle: RePEc:eee:enepol:v:144:y:2020:i:c:s030142152030392x
    DOI: 10.1016/j.enpol.2020.111663
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142152030392X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2020.111663?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Winkler, Jenny & Gaio, Alberto & Pfluger, Benjamin & Ragwitz, Mario, 2016. "Impact of renewables on electricity markets – Do support schemes matter?," Energy Policy, Elsevier, vol. 93(C), pages 157-167.
    2. Gawel, Erik & Purkus, Alexandra, 2013. "Promoting the market and system integration of renewable energies through premium schemes: A case study of the German market premium," UFZ Discussion Papers 4/2013, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    3. Shariat Torbaghan, Shahab & Müller, Hannah K. & Gibescu, Madeleine & van der Meijden, Mart & Roggenkamp, Martha, 2015. "The legal and economic impacts of implementing a joint feed-in premium support scheme on the development of an offshore grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 263-277.
    4. Inhoffen, Justus & Siemroth, Christoph & Zahn, Philipp, 2019. "Minimum prices and social interactions: Evidence from the German renewable energy program," Energy Economics, Elsevier, vol. 78(C), pages 350-364.
    5. Lundberg, Liv, 2019. "Auctions for all? Reviewing the German wind power auctions in 2017," Energy Policy, Elsevier, vol. 128(C), pages 449-458.
    6. Menegozzo, L. & Dal Monte, A. & Benini, E. & Benato, A., 2018. "Small wind turbines: A numerical study for aerodynamic performance assessment under gust conditions," Renewable Energy, Elsevier, vol. 121(C), pages 123-132.
    7. Hansen, Kenneth & Mathiesen, Brian Vad & Skov, Iva Ridjan, 2019. "Full energy system transition towards 100% renewable energy in Germany in 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 1-13.
    8. KC, Anup & Whale, Jonathan & Evans, Samuel P. & Clausen, Philip D., 2020. "An investigation of the impact of wind speed and turbulence on small wind turbine operation and fatigue loads," Renewable Energy, Elsevier, vol. 146(C), pages 87-98.
    9. Genoese, Massimo & Slednev, Viktor & Fichtner, Wolf, 2016. "Analysis of drivers affecting the use of market premium for renewables in Germany," Energy Policy, Elsevier, vol. 97(C), pages 494-506.
    10. Azarova, Valeriya & Cohen, Jed & Friedl, Christina & Reichl, Johannes, 2019. "Designing local renewable energy communities to increase social acceptance: Evidence from a choice experiment in Austria, Germany, Italy, and Switzerland," Energy Policy, Elsevier, vol. 132(C), pages 1176-1183.
    11. Grashof, Katherina, 2019. "Are auctions likely to deter community wind projects? And would this be problematic?," Energy Policy, Elsevier, vol. 125(C), pages 20-32.
    12. Anatolitis, Vasilios & Welisch, Marijke, 2017. "Putting renewable energy auctions into action – An agent-based model of onshore wind power auctions in Germany," Energy Policy, Elsevier, vol. 110(C), pages 394-402.
    13. Gawel, Erik & Purkus, Alexandra, 2013. "Promoting the market and system integration of renewable energies through premium schemes—A case study of the German market premium," Energy Policy, Elsevier, vol. 61(C), pages 599-609.
    14. Honrubia-Escribano, A. & Gómez-Lázaro, E. & Fortmann, J. & Sørensen, P. & Martin-Martinez, S., 2018. "Generic dynamic wind turbine models for power system stability analysis: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1939-1952.
    15. Wang, Jian & Ye, Yuanlin & Lu, Hualing & Li, Rongguo, 2014. "IEC standard based virtual wind turbine mechanical load test system," Renewable Energy, Elsevier, vol. 66(C), pages 634-640.
    16. Matschoss, Patrick & Bayer, Benjamin & Thomas, Heiko & Marian, Adela, 2019. "The German incentive regulation and its practical impact on the grid integration of renewable energy systems," Renewable Energy, Elsevier, vol. 134(C), pages 727-738.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Croonenbroeck, Carsten & Hennecke, David, 2021. "A comparison of optimizers in a unified standard for optimization on wind farm layout optimization," Energy, Elsevier, vol. 216(C).
    2. Kuznetsov, G.V. & Malyshev, D. Yu & Syrodoy, S.V. & Gutareva, N. Yu & Purin, M.V. & Kostoreva, Zh. A., 2022. "Justification of the use of forest waste in the power industry as one of the components OF BIO-coal-water suspension fuel," Energy, Elsevier, vol. 239(PA).
    3. del Río, Pablo & Kiefer, Christoph P., 2023. "Academic research on renewable electricity auctions: Taking stock and looking forward," Energy Policy, Elsevier, vol. 173(C).
    4. Kiunke, Theresa & Gemignani, Natalia & Malheiro, Pedro & Brudermann, Thomas, 2022. "Key factors influencing onshore wind energy development: A case study from the German North Sea region," Energy Policy, Elsevier, vol. 165(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anatolitis, Vasilios & Azanbayev, Alina & Fleck, Ann-Katrin, 2022. "How to design efficient renewable energy auctions? Empirical insights from Europe," Energy Policy, Elsevier, vol. 166(C).
    2. Hualin Cai & Jiageng Chen & Chenjing Dong & Jing Li & Zhemin Lin & Chuan He & Yicheng Jiang & Jincheng Li & Li Yang, 2019. "Power Market Equilibrium under the Joint FIP-RPS Renewable Energy Incentive Mechanism in China," Sustainability, MDPI, vol. 11(18), pages 1-19, September.
    3. Reinhard Madlener & Barbara Glensk & Lukas Gläsel, 2019. "Optimal Timing of Onshore Wind Repowering in Germany under Policy Regime Changes: A Real Options Analysis," Energies, MDPI, vol. 12(24), pages 1-33, December.
    4. Dincer, Hasan & Yuksel, Serhat, 2019. "Balanced scorecard-based analysis of investment decisions for the renewable energy alternatives: A comparative analysis based on the hybrid fuzzy decision-making approach," Energy, Elsevier, vol. 175(C), pages 1259-1270.
    5. Karsten Neuhoff & Nils May & Jörn C. Richstein, 2018. "Renewable Energy Policy in the Age of Falling Technology Costs," Discussion Papers of DIW Berlin 1746, DIW Berlin, German Institute for Economic Research.
    6. Winkler, Jenny & Gaio, Alberto & Pfluger, Benjamin & Ragwitz, Mario, 2016. "Impact of renewables on electricity markets – Do support schemes matter?," Energy Policy, Elsevier, vol. 93(C), pages 157-167.
    7. Marques, António Cardoso & Fuinhas, José Alberto & Menegaki, Angeliki N., 2014. "Interactions between electricity generation sources and economic activity in Greece: A VECM approach," Applied Energy, Elsevier, vol. 132(C), pages 34-46.
    8. Jabeen, Gul & Ahmad, Munir & Zhang, Qingyu, 2021. "Perceived critical factors affecting consumers’ intention to purchase renewable generation technologies: Rural-urban heterogeneity," Energy, Elsevier, vol. 218(C).
    9. Chaves-Ávila, José Pablo & van der Veen, Reinier A.C. & Hakvoort, Rudi A., 2014. "The interplay between imbalance pricing mechanisms and network congestions – Analysis of the German electricity market," Utilities Policy, Elsevier, vol. 28(C), pages 52-61.
    10. Narbel, Patrick A., 2014. "Rethinking how to support intermittent renewables," Discussion Papers 2014/17, Norwegian School of Economics, Department of Business and Management Science.
    11. Batz Liñeiro, Taimyra & Müsgens, Felix, 2023. "Evaluating the German onshore wind auction programme: An analysis based on individual bids," Energy Policy, Elsevier, vol. 172(C).
    12. David Wozabal & Christoph Graf & David Hirschmann, 2016. "The effect of intermittent renewables on the electricity price variance," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(3), pages 687-709, July.
    13. Jean-Michel Glachant & Arthur Henriot, 2013. "Melting-pots and salad bowls: the current debate on electricity market design for RES integration," Working Papers EPRG 1329, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    14. Lauven, Lars-Peter & Geldermann, Jutta & Desideri, Umberto, 2019. "Estimating the revenue potential of flexible biogas plants in the power sector," Energy Policy, Elsevier, vol. 128(C), pages 402-410.
    15. Côté, Elizabeth & Đukan, Mak & Pons-Seres de Brauwer, Cristian & Wüstenhagen, Rolf, 2022. "The price of actor diversity: Measuring project developers’ willingness to accept risks in renewable energy auctions," Energy Policy, Elsevier, vol. 163(C).
    16. Ländner, Eva-Maria & Märtz, Alexandra & Schöpf, Michael & Weibelzahl, Martin, 2019. "From energy legislation to investment determination: Shaping future electricity markets with different flexibility options," Energy Policy, Elsevier, vol. 129(C), pages 1100-1110.
    17. Jägemann, Cosima, 2014. "An illustrative note on the system price effect of wind and solar power - The German case," EWI Working Papers 2014-10, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    18. del Río, Pablo & Kiefer, Christoph P., 2023. "Academic research on renewable electricity auctions: Taking stock and looking forward," Energy Policy, Elsevier, vol. 173(C).
    19. Kruger, Wikus & Nygaard, Ivan & Kitzing, Lena, 2021. "Counteracting market concentration in renewable energy auctions: Lessons learned from South Africa," Energy Policy, Elsevier, vol. 148(PB).
    20. Zipp, Alexander, 2017. "The marketability of variable renewable energy in liberalized electricity markets – An empirical analysis," Renewable Energy, Elsevier, vol. 113(C), pages 1111-1121.

    More about this item

    Keywords

    Wind power; Yield; Incentives; Spatial analysis;
    All these keywords.

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • Q28 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Government Policy
    • P18 - Political Economy and Comparative Economic Systems - - Capitalist Economies - - - Energy; Environment

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:144:y:2020:i:c:s030142152030392x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.