IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i18p3540-d267549.html
   My bibliography  Save this article

Kick Risk Forecasting and Evaluating During Drilling Based on Autoregressive Integrated Moving Average Model

Author

Listed:
  • Hu Yin

    (School of Oil & Natural Gas Engineering, Southwest Petroleum University, Chengdu 610500, China)

  • Menghan Si

    (School of Oil & Natural Gas Engineering, Southwest Petroleum University, Chengdu 610500, China)

  • Qian Li

    (School of Oil & Natural Gas Engineering, Southwest Petroleum University, Chengdu 610500, China)

  • Jinke Zhang

    (School of Oil & Natural Gas Engineering, Southwest Petroleum University, Chengdu 610500, China)

  • Liming Dai

    (Industrial Systems Engineering, University of Regina, Regina, SK S4S0A2, Canada)

Abstract

Timely forecasting of the kick risk after a well kick can reduce the waiting time after well shut-in and provide more time for well killing operations. At present, the multiphase flow model is used to simulate and forecast the pit gain and casing pressure. Due to the complexity of downhole conditions, calculation of the multiphase flow model is difficult. In this paper, the time series analysis method is used to excavate the information contained in the time-varying data of pit gain and casing pressure. A forecasting model based on a time series analysis method of pit gain and casing pressure is established to forecast the pit gain and casing pressure after a kick. To divide the kick risk level and achieve the forecasting of the kick risk before and after well shut-in, kick risk analysis plates based on pit gain and casing pressure are established. Three pit gain cases and one casing pressure case are studied, and a comparison between measured data and predicted data shows that the proposed method has high prediction accuracy and repeatability.

Suggested Citation

  • Hu Yin & Menghan Si & Qian Li & Jinke Zhang & Liming Dai, 2019. "Kick Risk Forecasting and Evaluating During Drilling Based on Autoregressive Integrated Moving Average Model," Energies, MDPI, vol. 12(18), pages 1-21, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3540-:d:267549
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/18/3540/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/18/3540/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sen, Parag & Roy, Mousumi & Pal, Parimal, 2016. "Application of ARIMA for forecasting energy consumption and GHG emission: A case study of an Indian pig iron manufacturing organization," Energy, Elsevier, vol. 116(P1), pages 1031-1038.
    2. C. Agiakloglou & P. Newbold, 1992. "Empirical Evidence On Dickey‐Fuller‐Type Tests," Journal of Time Series Analysis, Wiley Blackwell, vol. 13(6), pages 471-483, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haifeng Zhu & Ming Xiang & Zhiqiang Lin & Jicheng Yang & Xuerui Wang & Xueqi Liu & Zhiyuan Wang, 2024. "Study on the Mechanism of Gas Intrusion and Its Transportation in a Wellbore under Shut-in Conditions," Energies, MDPI, vol. 17(1), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ye, Li & Yang, Deling & Dang, Yaoguo & Wang, Junjie, 2022. "An enhanced multivariable dynamic time-delay discrete grey forecasting model for predicting China's carbon emissions," Energy, Elsevier, vol. 249(C).
    2. Wang, Lei & Wang, Xinyu & Zhao, Zhongchao, 2024. "Mid-term electricity demand forecasting using improved multi-mode reconstruction and particle swarm-enhanced support vector regression," Energy, Elsevier, vol. 304(C).
    3. Arouna, Aminou & Fatognon, Irene Akoko & Saito, Kazuki & Futakuchi, Koichi, 2021. "Moving toward rice self-sufficiency in sub-Saharan Africa by 2030: Lessons learned from 10 years of the Coalition for African Rice Development," World Development Perspectives, Elsevier, vol. 21(C).
    4. Pedersen, Thomas Quistgaard & Schütte, Erik Christian Montes, 2020. "Testing for explosive bubbles in the presence of autocorrelated innovations," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 207-225.
    5. Wang, Qiang & Jiang, Feng, 2019. "Integrating linear and nonlinear forecasting techniques based on grey theory and artificial intelligence to forecast shale gas monthly production in Pennsylvania and Texas of the United States," Energy, Elsevier, vol. 178(C), pages 781-803.
    6. Magdalena Tutak & Jarosław Brodny, 2019. "Forecasting Methane Emissions from Hard Coal Mines Including the Methane Drainage Process," Energies, MDPI, vol. 12(20), pages 1-28, October.
    7. Mahdi Asadi & Iman Larki & Mohammad Mahdi Forootan & Rouhollah Ahmadi & Meisam Farajollahi, 2023. "Long-Term Scenario Analysis of Electricity Supply and Demand in Iran: Time Series Analysis, Renewable Electricity Development, Energy Efficiency and Conservation," Sustainability, MDPI, vol. 15(5), pages 1-24, March.
    8. Ma, Haoran, 2022. "Prediction of industrial power consumption in Jiangsu Province by regression model of time variable," Energy, Elsevier, vol. 239(PB).
    9. Duan, Tianyao & Guo, Huan & Qi, Xiao & Sun, Ming & Forrest, Jeffrey, 2024. "A novel information enhanced Grey Lotka–Volterra model driven by system mechanism and data for energy forecasting of WEET project in China," Energy, Elsevier, vol. 304(C).
    10. Teng, Sin Yong & Máša, Vítězslav & Touš, Michal & Vondra, Marek & Lam, Hon Loong & Stehlík, Petr, 2022. "Waste-to-energy forecasting and real-time optimization: An anomaly-aware approach," Renewable Energy, Elsevier, vol. 181(C), pages 142-155.
    11. Piñeiro-Chousa, Juan & López-Cabarcos, M. Ángeles & Pérez-Pico, Ada María & Ribeiro-Navarrete, Belén, 2018. "Does social network sentiment influence the relationship between the S&P 500 and gold returns?," International Review of Financial Analysis, Elsevier, vol. 57(C), pages 57-64.
    12. An, Yimeng & Dang, Yaoguo & Wang, Junjie & Zhou, Huimin & Mai, Son T., 2024. "Mixed-frequency data Sampling Grey system Model: Forecasting annual CO2 emissions in China with quarterly and monthly economic-energy indicators," Applied Energy, Elsevier, vol. 370(C).
    13. Reza Hafezi & Amir Naser Akhavan & Mazdak Zamani & Saeed Pakseresht & Shahaboddin Shamshirband, 2019. "Developing a Data Mining Based Model to Extract Predictor Factors in Energy Systems: Application of Global Natural Gas Demand," Energies, MDPI, vol. 12(21), pages 1-22, October.
    14. Ma, Xuejiao & Jiang, Ping & Jiang, Qichuan, 2020. "Research and application of association rule algorithm and an optimized grey model in carbon emissions forecasting," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    15. Alastair Hall, 1995. "Residual Autocovariances And Unit Root Tests Based On Instrumental Variable Estimators From Time Series Regression Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 16(6), pages 555-569, November.
    16. GRITLI, Mohamed Ilyes, 2018. "Quel avenir du dinar tunisien face à l'euro ? Prévision avec le modèle ARIMA [What future of the Tunisian dinar against the euro? Prediction with the ARIMA model]," MPRA Paper 83937, University Library of Munich, Germany.
    17. Aysha Malik & Ejaz Hussain & Sofia Baig & Muhammad Fahim Khokhar, 2020. "Forecasting CO2 emissions from energy consumption in Pakistan under different scenarios: The China–Pakistan Economic Corridor," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(2), pages 380-389, April.
    18. Minglu Ma & Zhuangzhuang Wang, 2019. "Prediction of the Energy Consumption Variation Trend in South Africa based on ARIMA, NGM and NGM-ARIMA Models," Energies, MDPI, vol. 13(1), pages 1-15, December.
    19. Guo‐Feng Fan & Yan‐Hui Guo & Jia‐Mei Zheng & Wei‐Chiang Hong, 2020. "A generalized regression model based on hybrid empirical mode decomposition and support vector regression with back‐propagation neural network for mid‐short‐term load forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 737-756, August.
    20. Yasir Alsaedi & Gurudeo Anand Tularam & Victor Wong, 2019. "Application of ARIMA Modelling for the Forecasting of Solar, Wind, Spot and Options Electricity Prices: The Australian National Electricity Market," International Journal of Energy Economics and Policy, Econjournals, vol. 9(4), pages 263-272.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3540-:d:267549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.