IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipbs0360544221023410.html
   My bibliography  Save this article

Prediction of industrial power consumption in Jiangsu Province by regression model of time variable

Author

Listed:
  • Ma, Haoran

Abstract

Industry has always been an important driving force to promote social and economic development, and the development of industry is inseparable from energy consumption. In the process of modern production, more and more modern advanced equipment is put into use, and the main power source of these equipment is electricity. However, the production of electricity is limited by conditions. Therefore, the main purpose of this paper is to simulate and forecast the industrial power consumption of Jiangsu Province through the nonlinear transformation of time variables, so that the industrial enterprises in Jiangsu can reasonably arrange the next power demand and ensure the smooth progress of industrial activities. The final research results show that the time series regression prediction model proposed in this paper can effectively simulate and predict the results of industrial power consumption, with an accuracy of 1.02 %.

Suggested Citation

  • Ma, Haoran, 2022. "Prediction of industrial power consumption in Jiangsu Province by regression model of time variable," Energy, Elsevier, vol. 239(PB).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221023410
    DOI: 10.1016/j.energy.2021.122093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221023410
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Guo-Feng & Peng, Li-Ling & Hong, Wei-Chiang, 2018. "Short term load forecasting based on phase space reconstruction algorithm and bi-square kernel regression model," Applied Energy, Elsevier, vol. 224(C), pages 13-33.
    2. Sen, Parag & Roy, Mousumi & Pal, Parimal, 2016. "Application of ARIMA for forecasting energy consumption and GHG emission: A case study of an Indian pig iron manufacturing organization," Energy, Elsevier, vol. 116(P1), pages 1031-1038.
    3. Sheng, Yu & Shi, Xunpeng & Zhang, Dandan, 2014. "Economic growth, regional disparities and energy demand in China," Energy Policy, Elsevier, vol. 71(C), pages 31-39.
    4. Wu, Lifeng & Gao, Xiaohui & Xiao, Yanli & Yang, Yingjie & Chen, Xiangnan, 2018. "Using a novel multi-variable grey model to forecast the electricity consumption of Shandong Province in China," Energy, Elsevier, vol. 157(C), pages 327-335.
    5. Jamil, Rehan, 2020. "Hydroelectricity consumption forecast for Pakistan using ARIMA modeling and supply-demand analysis for the year 2030," Renewable Energy, Elsevier, vol. 154(C), pages 1-10.
    6. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    7. Liu, Yuan & He, Li & Shen, Jing, 2017. "Optimization-based provincial hybrid renewable and non-renewable energy planning – A case study of Shanxi, China," Energy, Elsevier, vol. 128(C), pages 839-856.
    8. Hussain, Anwar & Rahman, Muhammad & Memon, Junaid Alam, 2016. "Forecasting electricity consumption in Pakistan: the way forward," Energy Policy, Elsevier, vol. 90(C), pages 73-80.
    9. Liao, Xianchun & Shi, Xunpeng (Roc), 2018. "Public appeal, environmental regulation and green investment: Evidence from China," Energy Policy, Elsevier, vol. 119(C), pages 554-562.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Chonghui & Bai, Chen & Su, Weihua & Balezentis, Tomas, 2024. "The centralised data envelopment analysis model integrated with cost information and utility theory for power price setting under carbon peak strategy at the firm-level," Energy, Elsevier, vol. 292(C).
    2. Feng Dong & Guoqing Li & Yajie Liu & Qing Xu & Caixia Li, 2023. "Spatial-Temporal Evolution and Cross-Industry Synergy of Carbon Emissions: Evidence from Key Industries in the City in Jiangsu Province, China," Sustainability, MDPI, vol. 15(5), pages 1-27, February.
    3. Witanowski, Łukasz & Klonowicz, Piotr & Lampart, Piotr & Klimaszewski, Piotr & Suchocki, Tomasz & Jędrzejewski, Łukasz & Zaniewski, Dawid & Ziółkowski, Paweł, 2023. "Impact of rotor geometry optimization on the off-design ORC turbine performance," Energy, Elsevier, vol. 265(C).
    4. Gao, Tian & Niu, Dongxiao & Ji, Zhengsen & Sun, Lijie, 2022. "Mid-term electricity demand forecasting using improved variational mode decomposition and extreme learning machine optimized by sparrow search algorithm," Energy, Elsevier, vol. 261(PB).
    5. Dong, Jia & Li, Cunbin, 2022. "Scenario prediction and decoupling analysis of carbon emission in Jiangsu Province, China," Technological Forecasting and Social Change, Elsevier, vol. 185(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Xiaoyue & Dang, Yaoguo & Ding, Song, 2020. "Using a self-adaptive grey fractional weighted model to forecast Jiangsu’s electricity consumption in China," Energy, Elsevier, vol. 190(C).
    2. Feng, Qianqian & Sun, Xiaolei & Hao, Jun & Li, Jianping, 2021. "Predictability dynamics of multifactor-influenced installed capacity: A perspective of country clustering," Energy, Elsevier, vol. 214(C).
    3. Syed Aziz Ur Rehman & Yanpeng Cai & Rizwan Fazal & Gordhan Das Walasai & Nayyar Hussain Mirjat, 2017. "An Integrated Modeling Approach for Forecasting Long-Term Energy Demand in Pakistan," Energies, MDPI, vol. 10(11), pages 1-23, November.
    4. Yin, Linfei & Xie, Jiaxing, 2021. "Multi-temporal-spatial-scale temporal convolution network for short-term load forecasting of power systems," Applied Energy, Elsevier, vol. 283(C).
    5. Wang, Qiang & Jiang, Feng, 2019. "Integrating linear and nonlinear forecasting techniques based on grey theory and artificial intelligence to forecast shale gas monthly production in Pennsylvania and Texas of the United States," Energy, Elsevier, vol. 178(C), pages 781-803.
    6. Wei-Chiang Hong & Guo-Feng Fan, 2019. "Hybrid Empirical Mode Decomposition with Support Vector Regression Model for Short Term Load Forecasting," Energies, MDPI, vol. 12(6), pages 1-16, March.
    7. Hu, Huanling & Wang, Lin & Lv, Sheng-Xiang, 2020. "Forecasting energy consumption and wind power generation using deep echo state network," Renewable Energy, Elsevier, vol. 154(C), pages 598-613.
    8. Rendón, Juan F. & Trespalacios, Alfredo & Cortés, Lina M. & Villada-Medina, Hernán D., 2021. "Modelización de la demanda de energía eléctrica: más allá de la normalidad || Electrical energy demand modeling: beyond normality," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 32(1), pages 83-98, December.
    9. Wang, Zheng-Xin & Wang, Zhi-Wei & Li, Qin, 2020. "Forecasting the industrial solar energy consumption using a novel seasonal GM(1,1) model with dynamic seasonal adjustment factors," Energy, Elsevier, vol. 200(C).
    10. Yuanyuan Zhou & Min Zhou & Qing Xia & Wei-Chiang Hong, 2019. "Construction of EMD-SVR-QGA Model for Electricity Consumption: Case of University Dormitory," Mathematics, MDPI, vol. 7(12), pages 1-23, December.
    11. Chen, Hai-Bao & Pei, Ling-Ling & Zhao, Yu-Feng, 2021. "Forecasting seasonal variations in electricity consumption and electricity usage efficiency of industrial sectors using a grey modeling approach," Energy, Elsevier, vol. 222(C).
    12. Aneeque A. Mir & Mohammed Alghassab & Kafait Ullah & Zafar A. Khan & Yuehong Lu & Muhammad Imran, 2020. "A Review of Electricity Demand Forecasting in Low and Middle Income Countries: The Demand Determinants and Horizons," Sustainability, MDPI, vol. 12(15), pages 1-35, July.
    13. Cao, Xin & Liu, Chang & Wu, Mingxuan & Li, Zhi & Wang, Yihan & Wen, Zongguo, 2023. "Heterogeneity and connection in the spatial–temporal evolution trend of China’s energy consumption at provincial level," Applied Energy, Elsevier, vol. 336(C).
    14. Xiwen Cui & Shaojun E & Dongxiao Niu & Dongyu Wang & Mingyu Li, 2021. "An Improved Forecasting Method and Application of China’s Energy Consumption under the Carbon Peak Target," Sustainability, MDPI, vol. 13(15), pages 1-21, August.
    15. Jamil, Rehan, 2020. "Hydroelectricity consumption forecast for Pakistan using ARIMA modeling and supply-demand analysis for the year 2030," Renewable Energy, Elsevier, vol. 154(C), pages 1-10.
    16. Sajid Abrar & Hooman Farzaneh, 2021. "Scenario Analysis of the Low Emission Energy System in Pakistan Using Integrated Energy Demand-Supply Modeling Approach," Energies, MDPI, vol. 14(11), pages 1-30, June.
    17. Sylvia Mardiana & Ferdinand Saragih & Martani Huseini, 2020. "Forecasting Gasoline Demand in Indonesia Using Time Series," International Journal of Energy Economics and Policy, Econjournals, vol. 10(6), pages 132-145.
    18. Xie, Wanli & Wu, Wen-Ze & Liu, Chong & Zhao, Jingjie, 2020. "Forecasting annual electricity consumption in China by employing a conformable fractional grey model in opposite direction," Energy, Elsevier, vol. 202(C).
    19. Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
    20. Zheng, Li & Abbasi, Kashif Raza & Salem, Sultan & Irfan, Muhammad & Alvarado, Rafael & Lv, Kangjuan, 2022. "How technological innovation and institutional quality affect sectoral energy consumption in Pakistan? Fresh policy insights from novel econometric approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221023410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.