IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i15p2998-d254573.html
   My bibliography  Save this article

Numerical Investigation of 48 V Electrification Potential in Terms of Fuel Economy and Vehicle Performance for a Lambda-1 Gasoline Passenger Car

Author

Listed:
  • Federico Millo

    (Department of Energy, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy)

  • Francesco Accurso

    (Department of Energy, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy)

  • Alessandro Zanelli

    (Department of Energy, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy)

  • Luciano Rolando

    (Department of Energy, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy)

Abstract

Real Driving Emissions (RDE) regulations require the adoption of stoichiometric operation across the entire engine map for downsized turbocharged gasoline engines, which have been so far generally exploiting spark timing retard and mixture enrichment for knock mitigation. However, stoichiometric operation has a detrimental effect on engine and vehicle performances if no countermeasures are taken, such as alternative approaches for knock mitigation, as the exploitation of Miller cycle and/or powertrain electrification to improve vehicle acceleration performance. This research activity aims, therefore, to assess the potential of 48 V electrification and of the adoption of Miller cycle for a downsized and stoichiometric turbocharged gasoline engine. An integrated vehicle and powertrain model was developed for a reference passenger car, equipped with a EU5 gasoline turbocharged engine. Afterwards, two different 48 V electrified powertrain concepts, one featuring a Belt Starter Generator (BSG) mild-hybrid architecture, the other featuring, in addition to the BSG, a Miller cycle engine combined with an e-supercharger were developed and investigated. Vehicle performances were evaluated both in terms of elasticity maneuvers and of CO 2 emissions for type approval and RDE driving cycles. Numerical simulations highlighted potential improvements up to 16% CO 2 reduction on RDE driving cycle of a 48 V electrified vehicle featuring a high efficiency powertrain with respect to a EU5 engine and more than 10% of transient performance improvement.

Suggested Citation

  • Federico Millo & Francesco Accurso & Alessandro Zanelli & Luciano Rolando, 2019. "Numerical Investigation of 48 V Electrification Potential in Terms of Fuel Economy and Vehicle Performance for a Lambda-1 Gasoline Passenger Car," Energies, MDPI, vol. 12(15), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:2998-:d:254573
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/15/2998/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/15/2998/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pavlovic, Jelica & Marotta, Alessandro & Ciuffo, Biagio, 2016. "CO2 emissions and energy demands of vehicles tested under the NEDC and the new WLTP type approval test procedures," Applied Energy, Elsevier, vol. 177(C), pages 661-670.
    2. Ahmed M. Ali & Dirk Söffker, 2018. "Towards Optimal Power Management of Hybrid Electric Vehicles in Real-Time: A Review on Methods, Challenges, and State-Of-The-Art Solutions," Energies, MDPI, vol. 11(3), pages 1-24, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huiyong Yang & Lei Zhang & Jingping Liu & Jianqin Fu & Dazi Shen & Zhipeng Yuan, 2023. "Development and Validation of a Variable Displacement Variable Compression Ratio Miller Cycle Technology on an Automotive Gasoline Engine," Energies, MDPI, vol. 16(11), pages 1-17, June.
    2. Sascha Krysmon & Frank Dorscheidt & Johannes Claßen & Marc Düzgün & Stefan Pischinger, 2021. "Real Driving Emissions—Conception of a Data-Driven Calibration Methodology for Hybrid Powertrains Combining Statistical Analysis and Virtual Calibration Platforms," Energies, MDPI, vol. 14(16), pages 1-27, August.
    3. Danijel Pavković & Mihael Cipek & Filip Plavac & Juraj Karlušić & Matija Krznar, 2022. "Internal Combustion Engine Starting and Torque Boosting Control System Design with Vibration Active Damping Features for a P0 Mild Hybrid Vehicle Configuration," Energies, MDPI, vol. 15(4), pages 1-24, February.
    4. Federico Millo & Fabrizio Gullino & Luciano Rolando, 2020. "Methodological Approach for 1D Simulation of Port Water Injection for Knock Mitigation in a Turbocharged DISI Engine," Energies, MDPI, vol. 13(17), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinglong Liu & Fuquan Zhao & Han Hao & Kangda Chen & Zongwei Liu & Hassan Babiker & Amer Ahmad Amer, 2020. "From NEDC to WLTP: Effect on the Energy Consumption, NEV Credits, and Subsidies Policies of PHEV in the Chinese Market," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    2. Tolgahan Kaya & Osman Akın Kutlar & Ozgur Oguz Taskiran, 2018. "Evaluation of the Effects of Biodiesel on Emissions and Performance by Comparing the Results of the New European Drive Cycle and Worldwide Harmonized Light Vehicles Test Cycle," Energies, MDPI, vol. 11(10), pages 1-14, October.
    3. Lian, Renzong & Peng, Jiankun & Wu, Yuankai & Tan, Huachun & Zhang, Hailong, 2020. "Rule-interposing deep reinforcement learning based energy management strategy for power-split hybrid electric vehicle," Energy, Elsevier, vol. 197(C).
    4. Michael Bohm & Josef Stetina & David Svida, 2022. "Exhaust Gas Temperature Pulsations of a Gasoline Engine and Its Stabilization Using Thermal Energy Storage System to Reduce Emissions," Energies, MDPI, vol. 15(7), pages 1-16, March.
    5. Kangda Chen & Fuquan Zhao & Xinglong Liu & Han Hao & Zongwei Liu, 2021. "Impacts of the New Worldwide Light-Duty Test Procedure on Technology Effectiveness and China’s Passenger Vehicle Fuel Consumption Regulations," IJERPH, MDPI, vol. 18(6), pages 1-20, March.
    6. Pirjola, Liisa & Kuuluvainen, Heino & Timonen, Hilkka & Saarikoski, Sanna & Teinilä, Kimmo & Salo, Laura & Datta, Arindam & Simonen, Pauli & Karjalainen, Panu & Kulmala, Kari & Rönkkö, Topi, 2019. "Potential of renewable fuel to reduce diesel exhaust particle emissions," Applied Energy, Elsevier, vol. 254(C).
    7. Penghui Qiang & Peng Wu & Tao Pan & Huaiquan Zang, 2021. "Real-Time Approximate Equivalent Consumption Minimization Strategy Based on the Single-Shaft Parallel Hybrid Powertrain," Energies, MDPI, vol. 14(23), pages 1-22, November.
    8. Karol Tucki & Remigiusz Mruk & Olga Orynycz & Andrzej Wasiak & Katarzyna Botwińska & Arkadiusz Gola, 2019. "Simulation of the Operation of a Spark Ignition Engine Fueled with Various Biofuels and Its Contribution to Technology Management," Sustainability, MDPI, vol. 11(10), pages 1-17, May.
    9. Xu, Aoqi & Xie, Changjun & Xie, Liping & Zhu, Wenchao & Xiong, Binyu & Gooi, Hoay Beng, 2024. "Performance prediction and optimization of annular thermoelectric generators based on a comprehensive surrogate model," Energy, Elsevier, vol. 290(C).
    10. Schulz, Felix & Rode, Johannes, 2022. "Public charging infrastructure and electric vehicles in Norway," Energy Policy, Elsevier, vol. 160(C).
    11. Stefan Tabacu & Dragos Popa, 2023. "Backward-Facing Analysis for the Preliminary Estimation of the Vehicle Fuel Consumption," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
    12. Claudio Cubito & Federico Millo & Giulio Boccardo & Giuseppe Di Pierro & Biagio Ciuffo & Georgios Fontaras & Simone Serra & Marcos Otura Garcia & Germana Trentadue, 2017. "Impact of Different Driving Cycles and Operating Conditions on CO 2 Emissions and Energy Management Strategies of a Euro-6 Hybrid Electric Vehicle," Energies, MDPI, vol. 10(10), pages 1-18, October.
    13. Hu, Dong & Huang, Chao & Yin, Guodong & Li, Yangmin & Huang, Yue & Huang, Hailong & Wu, Jingda & Li, Wenfei & Xie, Hui, 2024. "A transfer-based reinforcement learning collaborative energy management strategy for extended-range electric buses with cabin temperature comfort consideration," Energy, Elsevier, vol. 290(C).
    14. Zongjun Yin & Xuegang Ma & Chunying Zhang & Rong Su & Qingqing Wang, 2023. "A Logic Threshold Control Strategy to Improve the Regenerative Braking Energy Recovery of Electric Vehicles," Sustainability, MDPI, vol. 15(24), pages 1-33, December.
    15. Wahl, Alexander & Wellmann, Christoph & Monissen, Christian & Andert, Jakob, 2023. "Active temperature control of electric drivetrains for efficiency increase," Applied Energy, Elsevier, vol. 338(C).
    16. A’aeshah Alhakamy & Areej Alhowaity & Anwar Abdullah Alatawi & Hadeel Alsaadi, 2023. "Are Used Cars More Sustainable? Price Prediction Based on Linear Regression," Sustainability, MDPI, vol. 15(2), pages 1-17, January.
    17. Hu, Kejia & Chen, Yuche, 2016. "Technological growth of fuel efficiency in european automobile market 1975–2015," Energy Policy, Elsevier, vol. 98(C), pages 142-148.
    18. Hooftman, Nils & Messagie, Maarten & Van Mierlo, Joeri & Coosemans, Thierry, 2018. "A review of the European passenger car regulations – Real driving emissions vs local air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 86(C), pages 1-21.
    19. Yuttana Kongjeen & Krischonme Bhumkittipich, 2018. "Impact of Plug-in Electric Vehicles Integrated into Power Distribution System Based on Voltage-Dependent Power Flow Analysis," Energies, MDPI, vol. 11(6), pages 1-16, June.
    20. Zhu, Jianyun & Chen, Li & Wang, Xuefeng & Yu, Long, 2020. "Bi-level optimal sizing and energy management of hybrid electric propulsion systems," Applied Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:2998-:d:254573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.