IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i15p2937-d253187.html
   My bibliography  Save this article

Dilation Behavior of Gas-Saturated Methane-Hydrate Bearing Sand

Author

Listed:
  • Shmulik Pinkert

    (Structural Engineering Department, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Hias Building, H3, Office 681, Beer-Sheva 8410501, Israel)

Abstract

The geotechnical properties of methane-hydrate-bearing sediments (MHBS) are commonly investigated in the laboratory by using artificial hydrate formations in sandy specimens. Analyses of MHBS saturated with gas or water (in addition to methane-hydrate) showed significant mechanical differences between the two pore-filling states. This paper discusses the unique dilatancy behavior of gas-saturated MHBS, with comparison to water-saturated test results of previously-published works. It is shown that the significant compaction of gas-saturated samples is related to internal tensile forces, which are absent in water-saturated samples. The conceptual link between the internal tensile forces and the compaction characteristics is demonstrated through mechanical differences between pure sand and cemented sand. The paper establishes the link between internal adhesion in gas-saturated MHBS and the unique dilation response by using a stress–dilatancy analysis.

Suggested Citation

  • Shmulik Pinkert, 2019. "Dilation Behavior of Gas-Saturated Methane-Hydrate Bearing Sand," Energies, MDPI, vol. 12(15), pages 1-14, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:2937-:d:253187
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/15/2937/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/15/2937/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Machiko Tamaki & Tetsuya Fujii & Kiyofumi Suzuki, 2017. "Characterization and Prediction of the Gas Hydrate Reservoir at the Second Offshore Gas Production Test Site in the Eastern Nankai Trough, Japan," Energies, MDPI, vol. 10(10), pages 1-13, October.
    2. Michael T. Kezirian & S. Leigh Phoenix, 2017. "Natural Gas Hydrate as a Storage Mechanism for Safe, Sustainable and Economical Production from Offshore Petroleum Reserves," Energies, MDPI, vol. 10(6), pages 1-8, June.
    3. Kuniyuki Miyazaki & Norio Tenma & Kazuo Aoki & Tsutomu Yamaguchi, 2012. "A Nonlinear Elastic Model for Triaxial Compressive Properties of Artificial Methane-Hydrate-Bearing Sediment Samples," Energies, MDPI, vol. 5(10), pages 1-19, October.
    4. Beatrice Castellani & Alberto Maria Gambelli & Andrea Nicolini & Federico Rossi, 2019. "Energy and Environmental Analysis of Membrane-Based CH 4 -CO 2 Replacement Processes in Natural Gas Hydrates," Energies, MDPI, vol. 12(5), pages 1-17, March.
    5. Maria De La Fuente & Jean Vaunat & Héctor Marín-Moreno, 2019. "Thermo-Hydro-Mechanical Coupled Modeling of Methane Hydrate-Bearing Sediments: Formulation and Application," Energies, MDPI, vol. 12(11), pages 1-23, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leizhen Wang & Guorong Wang, 2020. "Experimental and Theoretical Study on the Critical Breaking Velocity of Marine Natural Gas Hydrate Sediments Breaking by Water Jet," Energies, MDPI, vol. 13(7), pages 1-11, April.
    2. Maria De La Fuente & Sandra Arndt & Héctor Marín-Moreno & Tim A. Minshull, 2022. "Assessing the Benthic Response to Climate-Driven Methane Hydrate Destabilisation: State of the Art and Future Modelling Perspectives," Energies, MDPI, vol. 15(9), pages 1-32, May.
    3. Ren, Junjie & Zeng, Siyu & Chen, Daoyi & Yang, Mingjun & Linga, Praveen & Yin, Zhenyuan, 2023. "Roles of montmorillonite clay on the kinetics and morphology of CO2 hydrate in hydrate-based CO2 sequestration1," Applied Energy, Elsevier, vol. 340(C).
    4. La Xiang & Enzhe Song & Yu Ding, 2018. "A Two-Zone Combustion Model for Knocking Prediction of Marine Natural Gas SI Engines," Energies, MDPI, vol. 11(3), pages 1-23, March.
    5. Xueping Chen & Shuaijun Li & Peng Zhang & Wenting Chen & Qingbai Wu & Jing Zhan & Yingmei Wang, 2021. "Promoted Disappearance of CO 2 Hydrate Self-Preservation Effect by Surfactant SDS," Energies, MDPI, vol. 14(13), pages 1-14, June.
    6. Zhu, Huixing & Xu, Tianfu & Yuan, Yilong & Xia, Yingli & Xin, Xin, 2020. "Numerical investigation of the natural gas hydrate production tests in the Nankai Trough by incorporating sand migration," Applied Energy, Elsevier, vol. 275(C).
    7. Na Wei & Yang Liu & Zhenjun Cui & Lin Jiang & Wantong Sun & Hanming Xu & Xiaoran Wang & Tong Qiu, 2020. "The Rule of Carrying Cuttings in Horizontal Well Drilling of Marine Natural Gas Hydrate," Energies, MDPI, vol. 13(5), pages 1-15, March.
    8. Jianchun Xu & Yan Liu & Wei Sun, 2024. "Production Simulation of Stimulated Reservoir Volume in Gas Hydrate Formation with Three-Dimensional Embedded Discrete Fracture Model," Sustainability, MDPI, vol. 16(22), pages 1-35, November.
    9. Lin Yang & Chen Chen & Rui Jia & Youhong Sun & Wei Guo & Dongbin Pan & Xitong Li & Yong Chen, 2018. "Influence of Reservoir Stimulation on Marine Gas Hydrate Conversion Efficiency in Different Accumulation Conditions," Energies, MDPI, vol. 11(2), pages 1-16, February.
    10. Mao, Peixiao & Wu, Nengyou & Wan, Yizhao & Hu, Gaowei & Wang, Xingxing, 2023. "Optimization of a multi-fractured multilateral well network in advantageous structural positions of ultralow-permeability hydrate reservoirs," Energy, Elsevier, vol. 268(C).
    11. Fang Jin & Feng Huang & Guobiao Zhang & Bing Li & Jianguo Lv, 2023. "Experimental Investigation on Deformation and Permeability of Clayey–Silty Sediment during Hydrate Dissociation by Depressurization," Energies, MDPI, vol. 16(13), pages 1-15, June.
    12. Marat K. Khasanov & Guzal R. Rafikova & Nail G. Musakaev, 2020. "Mathematical Model of Carbon Dioxide Injection into a Porous Reservoir Saturated with Methane and Its Gas Hydrate," Energies, MDPI, vol. 13(2), pages 1-17, January.
    13. Kuniyuki Miyazaki & Norio Tenma & Tsutomu Yamaguchi, 2017. "Relationship between Creep Property and Loading-Rate Dependence of Strength of Artificial Methane-Hydrate-Bearing Toyoura Sand under Triaxial Compression," Energies, MDPI, vol. 10(10), pages 1-15, September.
    14. Zhenhua Han & Luqing Zhang & Jian Zhou & Zhejun Pan & Song Wang & Ruirui Li, 2023. "Effect of Mineral Grain and Hydrate Layered Distribution Characteristics on the Mechanical Properties of Hydrate-Bearing Sediments," Energies, MDPI, vol. 16(21), pages 1-19, October.
    15. Yu, Tao & Guan, Guoqing & Abudula, Abuliti, 2019. "Production performance and numerical investigation of the 2017 offshore methane hydrate production test in the Nankai Trough of Japan," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    16. Jinze Song & Yuhao Li & Shuai Liu & Youming Xiong & Weixin Pang & Yufa He & Yaxi Mu, 2022. "Comparison of Machine Learning Algorithms for Sand Production Prediction: An Example for a Gas-Hydrate-Bearing Sand Case," Energies, MDPI, vol. 15(18), pages 1-32, September.
    17. Bian, Jiang & Wang, Hongchao & Yang, Kairan & Chen, Junwen & Cao, Xuewen, 2022. "Spatial differences in pressure and heat transfer characteristics of CO2 hydrate with dissociation for geological CO2 storage," Energy, Elsevier, vol. 240(C).
    18. Maria De La Fuente & Jean Vaunat & Héctor Marín-Moreno, 2021. "Modelling Methane Hydrate Saturation in Pores: Capillary Inhibition Effects," Energies, MDPI, vol. 14(18), pages 1-18, September.
    19. Shunzuo Qiu & Guorong Wang, 2020. "Effects of Reservoir Parameters on Separation Behaviors of the Spiral Separator for Purifying Natural Gas Hydrate," Energies, MDPI, vol. 13(20), pages 1-15, October.
    20. Zhang, Yongchao & Wan, Yizhao & Liu, Lele & Wang, Daigang & Li, Chengfeng & Liu, Changling & Wu, Nengyou, 2021. "Changes in reaction surface during the methane hydrate dissociation and its implications for hydrate production," Energy, Elsevier, vol. 230(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:2937-:d:253187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.