IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i15p2897-d252292.html
   My bibliography  Save this article

Artificial Intelligence Applications in Reservoir Engineering: A Status Check

Author

Listed:
  • Turgay Ertekin

    (John and Willie Leone Family Department of Energy and Mineral Engineering, The Pennsylvania State University, University Park, PA 16802, USA)

  • Qian Sun

    (Petroleum Recovery Research Center, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA)

Abstract

This article provides a comprehensive review of the state-of-art in the area of artificial intelligence applications to solve reservoir engineering problems. Research works including proxy model development, artificial-intelligence-assisted history-matching, project design, and optimization, etc. are presented to demonstrate the robustness of the intelligence systems. The successes of the developments prove the advantages of the AI approaches in terms of high computational efficacy and strong learning capabilities. Thus, the implementation of intelligence models enables reservoir engineers to accomplish many challenging and time-intensive works more effectively. However, it is not yet astute to completely replace the conventional reservoir engineering models with intelligent systems, since the defects of the technology cannot be ignored. The trend of research and industrial practices of reservoir engineering area would be establishing a hand-shaking protocol between the conventional modeling and the intelligent systems. Taking advantages of both methods, more robust solutions could be obtained with significantly less computational overheads.

Suggested Citation

  • Turgay Ertekin & Qian Sun, 2019. "Artificial Intelligence Applications in Reservoir Engineering: A Status Check," Energies, MDPI, vol. 12(15), pages 1-22, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:2897-:d:252292
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/15/2897/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/15/2897/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ampomah, W. & Balch, R.S. & Cather, M. & Will, R. & Gunda, D. & Dai, Z. & Soltanian, M.R., 2017. "Optimum design of CO2 storage and oil recovery under geological uncertainty," Applied Energy, Elsevier, vol. 195(C), pages 80-92.
    2. Kim, Youngmin & Jang, Hochang & Kim, Junggyun & Lee, Jeonghwan, 2017. "Prediction of storage efficiency on CO2 sequestration in deep saline aquifers using artificial neural network," Applied Energy, Elsevier, vol. 185(P1), pages 916-928.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dorian Skrobek & Jaroslaw Krzywanski & Marcin Sosnowski & Ghulam Moeen Uddin & Waqar Muhammad Ashraf & Karolina Grabowska & Anna Zylka & Anna Kulakowska & Wojciech Nowak, 2023. "Artificial Intelligence for Energy Processes and Systems: Applications and Perspectives," Energies, MDPI, vol. 16(8), pages 1-12, April.
    2. Suryeom Jo & Changhyup Park & Dong-Woo Ryu & Seongin Ahn, 2021. "Adaptive Surrogate Estimation with Spatial Features Using a Deep Convolutional Autoencoder for CO 2 Geological Sequestration," Energies, MDPI, vol. 14(2), pages 1-19, January.
    3. Vo Thanh, Hung & Lee, Kang-Kun, 2022. "Application of machine learning to predict CO2 trapping performance in deep saline aquifers," Energy, Elsevier, vol. 239(PE).
    4. Deli Jia & Jiqun Zhang & Yanchun Li & Li Wu & Meixia Qiao, 2023. "Recent Development of Smart Field Deployment for Mature Waterflood Reservoirs," Sustainability, MDPI, vol. 15(1), pages 1-22, January.
    5. Dongmei Zhang & Yuyang Zhang & Bohou Jiang & Xinwei Jiang & Zhijiang Kang, 2020. "Gaussian Processes Proxy Model with Latent Variable Models and Variogram-Based Sensitivity Analysis for Assisted History Matching," Energies, MDPI, vol. 13(17), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. You, Junyu & Ampomah, William & Sun, Qian, 2020. "Co-optimizing water-alternating-carbon dioxide injection projects using a machine learning assisted computational framework," Applied Energy, Elsevier, vol. 279(C).
    2. Wang, Sijia & Jiang, Lanlan & Cheng, Zucheng & Liu, Yu & Zhao, Jiafei & Song, Yongchen, 2021. "Experimental study on the CO2-decane displacement front behavior in high permeability sand evaluated by magnetic resonance imaging," Energy, Elsevier, vol. 217(C).
    3. Dai, Zhenxue & Zhang, Ye & Bielicki, Jeffrey & Amooie, Mohammad Amin & Zhang, Mingkan & Yang, Changbing & Zou, Youqin & Ampomah, William & Xiao, Ting & Jia, Wei & Middleton, Richard & Zhang, Wen & Sun, 2018. "Heterogeneity-assisted carbon dioxide storage in marine sediments," Applied Energy, Elsevier, vol. 225(C), pages 876-883.
    4. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    5. Oliva, I. & Ventura, M., 2024. "Who can benefit from multi-license oil concessionaires valuation?," Energy Economics, Elsevier, vol. 135(C).
    6. Xiaolong, Chen & Yiqiang, Li & Xiang, Tang & Huan, Qi & Xuebing, Sun & Jianghao, Luo, 2021. "Effect of gravity segregation on CO2 flooding under various pressure conditions: Application to CO2 sequestration and oil production," Energy, Elsevier, vol. 226(C).
    7. Kamal Jawher Khudaida & Diganta Bhusan Das, 2020. "A Numerical Analysis of the Effects of Supercritical CO 2 Injection on CO 2 Storage Capacities of Geological Formations," Clean Technol., MDPI, vol. 2(3), pages 1-32, September.
    8. Samin Raziperchikolaee & Ashwin Pasumarti & Srikanta Mishra, 2020. "The effect of natural fractures on CO2 storage performance and oil recovery from CO2 and WAG injection in an Appalachian basin reservoir," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 1098-1114, October.
    9. Jin, Lu & Hawthorne, Steven & Sorensen, James & Pekot, Lawrence & Kurz, Bethany & Smith, Steven & Heebink, Loreal & Herdegen, Volker & Bosshart, Nicholas & Torres, José & Dalkhaa, Chantsalmaa & Peters, 2017. "Advancing CO2 enhanced oil recovery and storage in unconventional oil play—Experimental studies on Bakken shales," Applied Energy, Elsevier, vol. 208(C), pages 171-183.
    10. Zhou, Xiang & Yuan, Qingwang & Rui, Zhenhua & Wang, Hanyi & Feng, Jianwei & Zhang, Liehui & Zeng, Fanhua, 2019. "Feasibility study of CO2 huff 'n' puff process to enhance heavy oil recovery via long core experiments," Applied Energy, Elsevier, vol. 236(C), pages 526-539.
    11. Hanamertani, Alvinda Sri & Ahmed, Shehzad, 2021. "Probing the role of associative polymer on scCO2-Foam strength and rheology enhancement in bulk and porous media for improving oil displacement efficiency," Energy, Elsevier, vol. 228(C).
    12. Scanziani, Alessio & Singh, Kamaljit & Menke, Hannah & Bijeljic, Branko & Blunt, Martin J., 2020. "Dynamics of enhanced gas trapping applied to CO2 storage in the presence of oil using synchrotron X-ray micro tomography," Applied Energy, Elsevier, vol. 259(C).
    13. Chen, Bailian & Pawar, Rajesh J., 2019. "Characterization of CO2 storage and enhanced oil recovery in residual oil zones," Energy, Elsevier, vol. 183(C), pages 291-304.
    14. Abdoli, B. & Hooshmand, F. & MirHassani, S.A., 2023. "A novel stochastic programming model under endogenous uncertainty for the CCS-EOR planning problem," Applied Energy, Elsevier, vol. 338(C).
    15. Nekrasov, S., 2023. "Environmental management from the point of energy transition: The example of the Rybinsk reservoir," Journal of the New Economic Association, New Economic Association, vol. 61(4), pages 110-126.
    16. Anderson, Austin & Rezaie, Behnaz, 2019. "Geothermal technology: Trends and potential role in a sustainable future," Applied Energy, Elsevier, vol. 248(C), pages 18-34.
    17. Anna Samnioti & Vassilis Gaganis, 2023. "Applications of Machine Learning in Subsurface Reservoir Simulation—A Review—Part II," Energies, MDPI, vol. 16(18), pages 1-53, September.
    18. Li, Wei & Lu, Can & Ding, Yi & Zhang, Yan-Wu, 2017. "The impacts of policy mix for resolving overcapacity in heavy chemical industry and operating national carbon emission trading market in China," Applied Energy, Elsevier, vol. 204(C), pages 509-524.
    19. Li, Didi & Zhang, Hongcheng & Li, Yang & Xu, Wenbin & Jiang, Xi, 2018. "Effects of N2 and H2S binary impurities on CO2 geological storage in stratified formation – A sensitivity study," Applied Energy, Elsevier, vol. 229(C), pages 482-492.
    20. Xie, Candie & Liu, Jingyong & Zhang, Xiaochun & Xie, Wuming & Sun, Jian & Chang, Kenlin & Kuo, Jiahong & Xie, Wenhao & Liu, Chao & Sun, Shuiyu & Buyukada, Musa & Evrendilek, Fatih, 2018. "Co-combustion thermal conversion characteristics of textile dyeing sludge and pomelo peel using TGA and artificial neural networks," Applied Energy, Elsevier, vol. 212(C), pages 786-795.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:2897-:d:252292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.