IDEAS home Printed from https://ideas.repec.org/a/gam/jcltec/v2y2020i3p21-364d406945.html
   My bibliography  Save this article

A Numerical Analysis of the Effects of Supercritical CO 2 Injection on CO 2 Storage Capacities of Geological Formations

Author

Listed:
  • Kamal Jawher Khudaida

    (Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK)

  • Diganta Bhusan Das

    (Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK)

Abstract

One of the most promising means of reducing carbon content in the atmosphere, which is aimed at tackling the threats of global warming, is injecting carbon dioxide (CO 2 ) into deep saline aquifers (DSAs). Keeping this in mind, this research aims to investigate the effects of various injection schemes/scenarios and aquifer characteristics with a particular view to enhance the current understanding of the key permanent sequestration mechanisms, namely, residual and solubility trapping of CO 2 . The paper also aims to study the influence of different injection scenarios and flow conditions on the CO 2 storage capacity and efficiency of DSAs. Furthermore, a specific term of the permanent capacity and efficiency factor of CO 2 immobilization in sedimentary formations is introduced to help facilitate the above analysis. Analyses for the effects of various injection schemes/scenarios and aquifer characteristics on enhancing the key permanent sequestration mechanisms is examined through a series of numerical simulations employed on 3D homogeneous and heterogeneous aquifers based on the geological settings for Sleipner Vest Field, which is located in the Norwegian part of the North Sea. The simulation results highlight the effects of heterogeneity, permeability isotropy, injection orientation and methodology, and domain-grid refinement on the capillary pressure–saturation relationships and the amounts of integrated CO 2 throughout the timeline of the simulation via different trapping mechanisms (solubility, residual and structural) and accordingly affect the efficiency of CO 2 sequestration. The results have shown that heterogeneity increases the residual trapping of CO 2 , while homogeneous formations promote more CO 2 dissolution because fluid flows faster in homogeneous porous media, inducing more contact with fresh brine, leading to higher dissolution rates of CO 2 compared to those in heterogeneous porous medium, which limits fluid seepage. Cyclic injection has been shown to have more influence on heterogenous domains as it increases the capillary pressure, which forces more CO 2 into smaller-sized pores to be trapped and exposed to dissolution in the brine at later stages of storage. Storage efficiency increases proportionally with the vertical-to-horizontal permeability ratio of geological formations because higher ratios facilitate the further extent of the gas plume and increases the solubility trapping of the integrated gas. The developed methodology and the presented results are expected to play key roles in providing further insights for assessing the feasibility of various geological formations for CO 2 storage.

Suggested Citation

  • Kamal Jawher Khudaida & Diganta Bhusan Das, 2020. "A Numerical Analysis of the Effects of Supercritical CO 2 Injection on CO 2 Storage Capacities of Geological Formations," Clean Technol., MDPI, vol. 2(3), pages 1-32, September.
  • Handle: RePEc:gam:jcltec:v:2:y:2020:i:3:p:21-364:d:406945
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-8797/2/3/21/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-8797/2/3/21/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sikandar Khan & Yehia Abel Khulief & Abdullatif Al-Shuhail, 2019. "Mitigating climate change via CO2 sequestration into Biyadh reservoir: geomechanical modeling and caprock integrity," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(1), pages 23-52, January.
    2. Said, Arshe & Laukkanen, Timo & Järvinen, Mika, 2016. "Pilot-scale experimental work on carbon dioxide sequestration using steelmaking slag," Applied Energy, Elsevier, vol. 177(C), pages 602-611.
    3. Cui, Guodong & Wang, Yi & Rui, Zhenhua & Chen, Bailian & Ren, Shaoran & Zhang, Liang, 2018. "Assessing the combined influence of fluid-rock interactions on reservoir properties and injectivity during CO2 storage in saline aquifers," Energy, Elsevier, vol. 155(C), pages 281-296.
    4. Kim, Youngmin & Jang, Hochang & Kim, Junggyun & Lee, Jeonghwan, 2017. "Prediction of storage efficiency on CO2 sequestration in deep saline aquifers using artificial neural network," Applied Energy, Elsevier, vol. 185(P1), pages 916-928.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Wei & Lu, Can & Ding, Yi & Zhang, Yan-Wu, 2017. "The impacts of policy mix for resolving overcapacity in heavy chemical industry and operating national carbon emission trading market in China," Applied Energy, Elsevier, vol. 204(C), pages 509-524.
    2. Zhang, Weifeng & Xu, Yuanlong & Wang, Qiuhua, 2022. "Coupled CO2 absorption and mineralization with low-concentration monoethanolamine," Energy, Elsevier, vol. 241(C).
    3. You, Junyu & Ampomah, William & Sun, Qian, 2020. "Co-optimizing water-alternating-carbon dioxide injection projects using a machine learning assisted computational framework," Applied Energy, Elsevier, vol. 279(C).
    4. Mahmoodpour, Saeed & Amooie, Mohammad Amin & Rostami, Behzad & Bahrami, Flora, 2020. "Effect of gas impurity on the convective dissolution of CO2 in porous media," Energy, Elsevier, vol. 199(C).
    5. Ren, Shan & Aldahri, Tahani & Liu, Weizao & Liang, Bin, 2021. "CO2 mineral sequestration by using blast furnace slag: From batch to continuous experiments," Energy, Elsevier, vol. 214(C).
    6. Chen, Bailian & Pawar, Rajesh J., 2019. "Characterization of CO2 storage and enhanced oil recovery in residual oil zones," Energy, Elsevier, vol. 183(C), pages 291-304.
    7. Zhang, Xiaogang & Ranjith, P.G. & Ranathunga, A.S., 2019. "Sub- and super-critical carbon dioxide flow variations in large high-rank coal specimen: An experimental study," Energy, Elsevier, vol. 181(C), pages 148-161.
    8. Yao, Hongbo & Chen, Yuedu & Liang, Weiguo & Li, Zhigang & Song, Xiaoxia, 2023. "Experimental study on the permeability evolution of coal with CO2 phase transition," Energy, Elsevier, vol. 266(C).
    9. Zevenhoven, Ron & Legendre, Daniel & Said, Arshe & Järvinen, Mika, 2019. "Carbon dioxide dissolution and ammonia losses in bubble columns for precipitated calcium carbonate (PCC) production," Energy, Elsevier, vol. 175(C), pages 1121-1129.
    10. Nekrasov, S., 2023. "Environmental management from the point of energy transition: The example of the Rybinsk reservoir," Journal of the New Economic Association, New Economic Association, vol. 61(4), pages 110-126.
    11. Yen Adams Sokama‐Neuyam & Jann Rune Ursin, 2018. "The coupled effect of salt precipitation and fines mobilization on CO2 injectivity in sandstone," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 1066-1078, December.
    12. Rashid Mohamed Mkemai & Gong Bin, 2020. "A modeling and numerical simulation study of enhanced CO2 sequestration into deep saline formation: a strategy towards climate change mitigation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 901-927, May.
    13. Xie, Candie & Liu, Jingyong & Zhang, Xiaochun & Xie, Wuming & Sun, Jian & Chang, Kenlin & Kuo, Jiahong & Xie, Wenhao & Liu, Chao & Sun, Shuiyu & Buyukada, Musa & Evrendilek, Fatih, 2018. "Co-combustion thermal conversion characteristics of textile dyeing sludge and pomelo peel using TGA and artificial neural networks," Applied Energy, Elsevier, vol. 212(C), pages 786-795.
    14. Morgan, Joshua C. & Chinen, Anderson Soares & Anderson-Cook, Christine & Tong, Charles & Carroll, John & Saha, Chiranjib & Omell, Benjamin & Bhattacharyya, Debangsu & Matuszewski, Michael & Bhat, K. S, 2020. "Development of a framework for sequential Bayesian design of experiments: Application to a pilot-scale solvent-based CO2 capture process," Applied Energy, Elsevier, vol. 262(C).
    15. Ampomah, W. & Balch, R.S. & Cather, M. & Will, R. & Gunda, D. & Dai, Z. & Soltanian, M.R., 2017. "Optimum design of CO2 storage and oil recovery under geological uncertainty," Applied Energy, Elsevier, vol. 195(C), pages 80-92.
    16. Li, Hongwei & Tang, Zhigang & Li, Na & Cui, Longpeng & Mao, Xian-zhong, 2020. "Mechanism and process study on steel slag enhancement for CO2 capture by seawater," Applied Energy, Elsevier, vol. 276(C).
    17. Zhang, Lisong & Jiang, Menggang & Yang, Qingchun & Chen, Shaoying & Wang, Wei, 2023. "Evolution of fault-induced salt precipitation due to convection of CO2 and brine along fault during CO2 storage in multilayered saline aquifer-caprock," Energy, Elsevier, vol. 278(C).
    18. Xiao, Ting & Chen, Ting & Ma, Zhiwei & Tian, Hailong & Meguerdijian, Saro & Chen, Bailian & Pawar, Rajesh & Huang, Lianjie & Xu, Tianfu & Cather, Martha & McPherson, Brian, 2024. "A review of risk and uncertainty assessment for geologic carbon storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    19. Jing, Jing & Yang, Yanlin & Tang, Zhonghua, 2021. "Assessing the influence of injection temperature on CO2 storage efficiency and capacity in the sloping formation with fault," Energy, Elsevier, vol. 215(PA).
    20. Muhammad Hammad Rasool & Maqsood Ahmad & Muhammad Ayoub, 2023. "Selecting Geological Formations for CO 2 Storage: A Comparative Rating System," Sustainability, MDPI, vol. 15(8), pages 1-39, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jcltec:v:2:y:2020:i:3:p:21-364:d:406945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.