IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v356y2024ics0306261923017300.html
   My bibliography  Save this article

Asymmetry stagger array structure ultra-wideband vibration harvester integrating magnetically coupled nonlinear effects

Author

Listed:
  • Cong, Moyue
  • Gao, Yongzhuo
  • Wang, Weidong
  • He, Long
  • Mao, Xiwang
  • Long, Yi
  • Dong, Wei

Abstract

Traditional energy harvesters often have limitations in terms of bandwidth and power output, resulting in poor performance. This study reports a multi-strategy ultra-wideband energy harvesting device that utilizes an asymmetry, stagger array, magnetic coupling, and nonlinearity strategies to achieve high power output over an ultra-wideband frequency range without the need for external power input. The energy harvesting device consists of a base, two elastic beams, and two sets of asymmetric palm-shaped piezoelectric cantilever beam structures, each with a magnet attached at the tip. By reasonably arranging the palm-shaped mechanism and magnets, a magnetic coupling effect is introduced to achieve high power density output at non-resonant frequencies. Numerical analysis is conducted to evaluate the performance of the proposed structure, assess the influence of structural parameters, and establish a dynamic model to analyze the energy harvesting device. Experimental results demonstrate that the structure achieves a maximum power output of 60.49 mW at 19.9 Hz and 0.5 g, with a peak power density of approximately 8.065 × 103 W/m3. Within an ultra-wideband frequency range that spans 6 Hz to 64.2 Hz, the energy harvester maintains an output voltage which is more than 5 V. Furthermore, temperature and humidity monitoring are performed using Bluetooth sensors to adaptively assess the energy harvesting device, eliminating the need for lithium batteries and ensuring stable signal transmission. The device can be utilized for condition monitoring in any unstable vibration environment, contributing to the realization of distributed monitoring in the Internet of Things (IoT).

Suggested Citation

  • Cong, Moyue & Gao, Yongzhuo & Wang, Weidong & He, Long & Mao, Xiwang & Long, Yi & Dong, Wei, 2024. "Asymmetry stagger array structure ultra-wideband vibration harvester integrating magnetically coupled nonlinear effects," Applied Energy, Elsevier, vol. 356(C).
  • Handle: RePEc:eee:appene:v:356:y:2024:i:c:s0306261923017300
    DOI: 10.1016/j.apenergy.2023.122366
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923017300
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122366?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shim, Hyo-Kyung & Sun, Shuailing & Kim, Hyun-Soo & Lee, Dong-Gyu & Lee, Yeon-Jeong & Jang, Ji-Soo & Cho, Kyung-Hoon & Baik, Jeong Min & Kang, Chong-Yun & Leng, Yonggang & Hur, Sunghoon & Song, Hyun-Ch, 2022. "On a nonlinear broadband piezoelectric energy harvester with a coupled beam array," Applied Energy, Elsevier, vol. 328(C).
    2. Zhao, Chaoyang & Hu, Guobiao & Li, Xin & Liu, Zicheng & Yuan, Weifeng & Yang, Yaowen, 2023. "Wide-bandwidth triboelectric energy harvester combining impact nonlinearity and multi-resonance method," Applied Energy, Elsevier, vol. 348(C).
    3. Song, Hyun-Cheol & Kumar, Prashant & Sriramdas, Rammohan & Lee, Hyeon & Sharpes, Nathan & Kang, Min-Gyu & Maurya, Deepam & Sanghadasa, Mohan & Kang, Hyung-Won & Ryu, Jungho & Reynolds, William T. & Pr, 2018. "Broadband dual phase energy harvester: Vibration and magnetic field," Applied Energy, Elsevier, vol. 225(C), pages 1132-1142.
    4. Kwak, Wonil & Lee, Yongbok, 2021. "Optimal design and experimental verification of piezoelectric energy harvester with fractal structure," Applied Energy, Elsevier, vol. 282(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shim, Hyo-Kyung & Sun, Shuailing & Kim, Hyun-Soo & Lee, Dong-Gyu & Lee, Yeon-Jeong & Jang, Ji-Soo & Cho, Kyung-Hoon & Baik, Jeong Min & Kang, Chong-Yun & Leng, Yonggang & Hur, Sunghoon & Song, Hyun-Ch, 2022. "On a nonlinear broadband piezoelectric energy harvester with a coupled beam array," Applied Energy, Elsevier, vol. 328(C).
    2. Khazaee, Majid & Huber, John E. & Rosendahl, Lasse & Rezania, Alireza, 2021. "The investigation of viscous and structural damping for piezoelectric energy harvesters using only time-domain voltage measurements," Applied Energy, Elsevier, vol. 285(C).
    3. Chen, Lin & Liao, Xin & Sun, Beibei & Zhang, Ning & Wu, Jianwei, 2022. "A numerical-experimental dynamic analysis of high-efficiency and broadband bistable energy harvester with self-decreasing potential barrier effect," Applied Energy, Elsevier, vol. 317(C).
    4. Xie, Xiangdong & Zhang, Jiankun & Wang, Zijing & Li, Lingjie & Du, Guofeng, 2024. "The effect of magnetic proof masses on the energy harvesting bandwidth of piezoelectric coupled cantilever array," Applied Energy, Elsevier, vol. 353(PA).
    5. Zhuang Lu & Quan Wen & Xianming He & Zhiyu Wen, 2019. "A Nonlinear Broadband Electromagnetic Vibration Energy Harvester Based on Double-Clamped Beam," Energies, MDPI, vol. 12(14), pages 1-12, July.
    6. Sun, Rujie & Li, Qinyu & Yao, Jianfei & Scarpa, Fabrizio & Rossiter, Jonathan, 2020. "Tunable, multi-modal, and multi-directional vibration energy harvester based on three-dimensional architected metastructures," Applied Energy, Elsevier, vol. 264(C).
    7. Liu, Weiqun & Yuan, Zhongxin & Zhang, Shuang & Zhu, Qiao, 2019. "Enhanced broadband generator of dual buckled beams with simultaneous translational and torsional coupling," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    8. Gao, Xiangyu & Qiu, Chaorui & Li, Guo & Ma, Ming & Yang, Shuai & Xu, Zhuo & Li, Fei, 2020. "High output power density of a shear-mode piezoelectric energy harvester based on Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals," Applied Energy, Elsevier, vol. 271(C).
    9. Wang, Chen & Lai, Siu-Kai & Wang, Jia-Mei & Feng, Jing-Jing & Ni, Yi-Qing, 2021. "An ultra-low-frequency, broadband and multi-stable tri-hybrid energy harvester for enabling the next-generation sustainable power," Applied Energy, Elsevier, vol. 291(C).
    10. Qu, Shuai & Ren, Yuhao & Hu, Guobiao & Ding, Wei & Dong, Liwei & Yang, Jizhong & Wu, Zaixin & Zhu, Shengyang & Yang, Yaowen & Zhai, Wanming, 2024. "Event-driven piezoelectric energy harvesting for railway field applications," Applied Energy, Elsevier, vol. 364(C).
    11. Yawei Wang & Hengxu Du & Hengyi Yang & Ziyue Xi & Cong Zhao & Zian Qian & Xinyuan Chuai & Xuzhang Peng & Hongyong Yu & Yu Zhang & Xin Li & Guobiao Hu & Hao Wang & Minyi Xu, 2024. "A rolling-mode triboelectric nanogenerator with multi-tunnel grating electrodes and opposite-charge-enhancement for wave energy harvesting," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Moradi-Dastjerdi, Rasool & Behdinan, Kamran, 2021. "Dynamic performance of piezoelectric energy harvesters with a multifunctional nanocomposite substrate," Applied Energy, Elsevier, vol. 293(C).
    13. Sallam A. Kouritem & Muath A. Bani-Hani & Mohamed Beshir & Mohamed M. Y. B. Elshabasy & Wael A. Altabey, 2022. "Automatic Resonance Tuning Technique for an Ultra-Broadband Piezoelectric Energy Harvester," Energies, MDPI, vol. 15(19), pages 1-20, October.
    14. Lee, Min-seon & Kim, Chang-il & Park, Woon-ik & Cho, Jeong-ho & Paik, Jong-hoo & Jeong, Young Hun, 2019. "Energy harvesting performance of unimorph piezoelectric cantilever generator using interdigitated electrode lead zirconate titanate laminate," Energy, Elsevier, vol. 179(C), pages 373-382.
    15. Paul, Kankana & Amann, Andreas & Roy, Saibal, 2021. "Tapered nonlinear vibration energy harvester for powering Internet of Things," Applied Energy, Elsevier, vol. 283(C).
    16. Maurya, Deepam & Kumar, Prashant & Khaleghian, Seyedmeysam & Sriramdas, Rammohan & Kang, Min Gyu & Kishore, Ravi Anant & Kumar, Vireshwar & Song, Hyun-Cheol & Park, Jung-Min (Jerry) & Taheri, Saied & , 2018. "Energy harvesting and strain sensing in smart tire for next generation autonomous vehicles," Applied Energy, Elsevier, vol. 232(C), pages 312-322.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:356:y:2024:i:c:s0306261923017300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.