IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i14p2675-d247767.html
   My bibliography  Save this article

Allocation of Ontario’s Surplus Electricity to Different Power-to-Gas Applications

Author

Listed:
  • Suaad S. Al-Zakwani

    (Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada)

  • Azadeh Maroufmashat

    (Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada)

  • Abdelkader Mazouz

    (College of Business, Al Ain University of Science and Technology, Al Ain 64141, UAE)

  • Michael Fowler

    (Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada)

  • Ali Elkamel

    (Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
    Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, UAE)

Abstract

Power-to-Gas (PtG) is a potential means of managing intermittent and weather-dependent renewable energies to create a storable chemical energy form. Power-to-Gas is not only a storage technology; its role can be extended to many other applications including energy distribution, transportation, and industrial use. This study quantifies the hydrogen volumes upon utilizing Ontario, Canada’s surplus electricity baseload and explores the allocation of the hydrogen produced to four Power-to-Gas pathways in terms of economic and environmental benefits, focusing on the following Power-to-Gas pathways: Power-to-Gas to mobility fuel, Power-to-Gas to industry, Power-to-Gas to natural gas pipelines for use as hydrogen-enriched natural gas, and Power-to-Gas to renewable natural gas (i.e., Methanation). The study shows that the Power-to-Gas to mobility fuel pathway has the potential to be implemented. Utilization of hydrogen for refueling light-duty vehicles is a profitable business case with an average positive net present value of $4.5 billions, five years payback time, and 20% internal rate of return. Moreover, this PtG pathway promises a potential 2,215,916 tonnes of CO 2 reduction from road travel.

Suggested Citation

  • Suaad S. Al-Zakwani & Azadeh Maroufmashat & Abdelkader Mazouz & Michael Fowler & Ali Elkamel, 2019. "Allocation of Ontario’s Surplus Electricity to Different Power-to-Gas Applications," Energies, MDPI, vol. 12(14), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2675-:d:247767
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/14/2675/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/14/2675/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Azadeh Maroufmashat & Michael Fowler, 2017. "Transition of Future Energy System Infrastructure; through Power-to-Gas Pathways," Energies, MDPI, vol. 10(8), pages 1-22, July.
    2. Mukherjee, Ushnik & Walker, Sean & Maroufmashat, Azadeh & Fowler, Michael & Elkamel, Ali, 2017. "Development of a pricing mechanism for valuing ancillary, transportation and environmental services offered by a power to gas energy system," Energy, Elsevier, vol. 128(C), pages 447-462.
    3. Ibrahim, H. & Ilinca, A. & Perron, J., 2008. "Energy storage systems--Characteristics and comparisons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1221-1250, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sean Walker & Suadd Al-Zakwani & Azadeh Maroufmashat & Michael Fowler & Ali Elkamel, 2020. "Multi-Criteria Examination of Power-to-Gas Pathways under Stochastic Preferences," Energies, MDPI, vol. 13(12), pages 1-18, June.
    2. Tong Xing & Hongyu Lin & Zhongfu Tan & Liwei Ju, 2019. "Coordinated Energy Management for Micro Energy Systems Considering Carbon Emissions Using Multi-Objective Optimization," Energies, MDPI, vol. 12(23), pages 1-27, November.
    3. Nicholas Preston & Azadeh Maroufmashat & Hassan Riaz & Sami Barbouti & Ushnik Mukherjee & Peter Tang & Javan Wang & Ali Elkamel & Michael Fowler, 2021. "An Economic, Environmental and Safety Analysis of Using Hydrogen Enriched Natural Gas (HENG) in Industrial Facilities," Energies, MDPI, vol. 14(9), pages 1-21, April.
    4. Shah Faisal & Ciwei Gao, 2024. "A Comprehensive Review of Integrated Energy Systems Considering Power-to-Gas Technology," Energies, MDPI, vol. 17(18), pages 1-21, September.
    5. Eugenio Meloni & Marco Martino & Giuseppina Iervolino & Concetta Ruocco & Simona Renda & Giovanni Festa & Vincenzo Palma, 2022. "The Route from Green H 2 Production through Bioethanol Reforming to CO 2 Catalytic Conversion: A Review," Energies, MDPI, vol. 15(7), pages 1-36, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Côté, Elizabeth & Salm, Sarah, 2022. "Risk-adjusted preferences of utility companies and institutional investors for battery storage and green hydrogen investment," Energy Policy, Elsevier, vol. 163(C).
    2. Valerie Eveloy & Tesfaldet Gebreegziabher, 2018. "A Review of Projected Power-to-Gas Deployment Scenarios," Energies, MDPI, vol. 11(7), pages 1-52, July.
    3. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Karellas, S. & Tzouganatos, N., 2014. "Comparison of the performance of compressed-air and hydrogen energy storage systems: Karpathos island case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 865-882.
    5. Ardizzon, G. & Cavazzini, G. & Pavesi, G., 2014. "A new generation of small hydro and pumped-hydro power plants: Advances and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 746-761.
    6. Shuang Rong & Weixing Li & Zhimin Li & Yong Sun & Taiyi Zheng, 2015. "Optimal Allocation of Thermal-Electric Decoupling Systems Based on the National Economy by an Improved Conjugate Gradient Method," Energies, MDPI, vol. 9(1), pages 1-21, December.
    7. Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
    8. Katla, Daria & Bartela, Łukasz & Skorek-Osikowska, Anna, 2020. "Evaluation of electricity generation subsystem of power-to-gas-to-power unit using gas expander and heat recovery steam generator," Energy, Elsevier, vol. 212(C).
    9. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    10. Mehrabankhomartash, Mahmoud & Rayati, Mohammad & Sheikhi, Aras & Ranjbar, Ali Mohammad, 2017. "Practical battery size optimization of a PV system by considering individual customer damage function," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 36-50.
    11. Toledo, Olga Moraes & Oliveira Filho, Delly & Diniz, Antônia Sônia Alves Cardoso, 2010. "Distributed photovoltaic generation and energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 506-511, January.
    12. Min Pang & Yichang Zhang & Sha He & Qiong Li, 2023. "Influencing Factors and Their Influencing Mechanisms on Integrated Power and Gas System Coupling," Sustainability, MDPI, vol. 15(17), pages 1-13, September.
    13. Rabiee, Abdorreza & Khorramdel, Hossein & Aghaei, Jamshid, 2013. "A review of energy storage systems in microgrids with wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 316-326.
    14. Morgan, Eric & Manwell, James & McGowan, Jon, 2014. "Wind-powered ammonia fuel production for remote islands: A case study," Renewable Energy, Elsevier, vol. 72(C), pages 51-61.
    15. Goraj, Rafał & Kiciński, Marcin & Ślefarski, Rafał & Duczkowska, Anna, 2023. "Validity of decision criteria for selecting power-to-gas projects in Poland," Utilities Policy, Elsevier, vol. 83(C).
    16. Meng, Hui & Wang, Meihong & Olumayegun, Olumide & Luo, Xiaobo & Liu, Xiaoyan, 2019. "Process design, operation and economic evaluation of compressed air energy storage (CAES) for wind power through modelling and simulation," Renewable Energy, Elsevier, vol. 136(C), pages 923-936.
    17. Ali Elkamel, 2018. "Energy Production Systems," Energies, MDPI, vol. 11(10), pages 1-4, September.
    18. Benato, Alberto & Stoppato, Anna, 2018. "Heat transfer fluid and material selection for an innovative Pumped Thermal Electricity Storage system," Energy, Elsevier, vol. 147(C), pages 155-168.
    19. Mariusz Niekurzak & Jerzy Mikulik, 2021. "Modeling of Energy Consumption and Reduction of Pollutant Emissions in a Walking Beam Furnace Using the Expert Method—Case Study," Energies, MDPI, vol. 14(23), pages 1-22, December.
    20. Yao Ahoutou & Adrian Ilinca & Mohamad Issa, 2022. "Electrochemical Cells and Storage Technologies to Increase Renewable Energy Share in Cold Climate Conditions—A Critical Assessment," Energies, MDPI, vol. 15(4), pages 1-30, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2675-:d:247767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.