IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p6045-d1534486.html
   My bibliography  Save this article

Review of the Coupled System of Solar and Air Source Heat Pump

Author

Listed:
  • Xin Meng

    (School of Power and Energy Engineering, Xi’an Jiaotong University, Xi’an 710049, China
    School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong 723001, China)

  • Xin Zhou

    (School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong 723001, China)

  • Zhenyu Li

    (School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong 723001, China)

Abstract

The coupled operation of solar energy and air source heat pump (ASHP) can effectively solve the intermittent problem of solar energy systems running alone and the problem of performance degradation of ASHP systems running alone in winter. The coupled system of solar energy and ASHP can be divided into direct expansion type and indirect expansion type according to the structure form, and the indirect expansion type can be divided into series type, parallel type, and hybrid type. Various architectural forms of the solar-air source heat pump coupled system (S–ASHP) have achieved enhanced energy efficiency by means of a series of strategies, including the optimization of collectors, the refinement of evaporator structures, and the regulation of the temperature within hot water storage tanks. Choosing the appropriate architecture needs to comprehensively consider factors such as the external environment and load demand. In this paper, a variety of S–ASHP are summarized in order to provide some guidance for the future application of S–ASHP systems in the field of heating.

Suggested Citation

  • Xin Meng & Xin Zhou & Zhenyu Li, 2024. "Review of the Coupled System of Solar and Air Source Heat Pump," Energies, MDPI, vol. 17(23), pages 1-26, December.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6045-:d:1534486
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/6045/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/6045/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chao Huan & Shengteng Li & Fenghao Wang & Lang Liu & Yujiao Zhao & Zhihua Wang & Pengfei Tao, 2019. "Performance Analysis of a Combined Solar-Assisted Heat Pump Heating System in Xi’an, China," Energies, MDPI, vol. 12(13), pages 1-20, June.
    2. Zhang, Qunli & Zhang, Lin & Nie, Jinzhe & Li, Yinlong, 2017. "Techno-economic analysis of air source heat pump applied for space heating in northern China," Applied Energy, Elsevier, vol. 207(C), pages 533-542.
    3. Cai, Jingyong & Li, Zhouhang & Ji, Jie & Zhou, Fan, 2019. "Performance analysis of a novel air source hybrid solar assisted heat pump," Renewable Energy, Elsevier, vol. 139(C), pages 1133-1145.
    4. Cai, Jingyong & Zhang, Feng & Ji, Jie, 2020. "Comparative analysis of solar-air dual source heat pump system with different heat source configurations," Renewable Energy, Elsevier, vol. 150(C), pages 191-203.
    5. Barone, Giovanni & Buonomano, Annamaria & Kalogirou, Soteris & Ktistis, Panayiotis & Palombo, Adolfo, 2024. "A holistic methodology for designing novel flat plate evacuated solar thermal collectors: Modelling and experimental assessment," Renewable Energy, Elsevier, vol. 232(C).
    6. Jiang, Hou & Lu, Ning & Yao, Ling & Qin, Jun & Liu, Tang, 2023. "Impact of climate changes on the stability of solar energy: Evidence from observations and reanalysis," Renewable Energy, Elsevier, vol. 208(C), pages 726-736.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yubo & Quan, Zhenhua & Zhao, Yaohua & Wang, Lincheng & Liu, Zichu, 2022. "Performance and optimization of a novel solar-air source heat pump building energy supply system with energy storage," Applied Energy, Elsevier, vol. 324(C).
    2. Song, Zhiying & Ji, Jie & Cai, Jingyong & Zhao, Bin & Li, Zhaomeng, 2021. "Investigation on a direct-expansion solar-assisted heat pump with a novel hybrid compound parabolic concentrator/photovoltaic/fin evaporator," Applied Energy, Elsevier, vol. 299(C).
    3. Conte, Riccardo & Zanetti, Emanuele & Tancon, Marco & Azzolin, Marco & Girotto, Sergio & Del Col, Davide, 2024. "The advantage of running a direct expansion CO2 heat pump with solar-and-air simultaneous heat sources: experimental and numerical investigation," Applied Energy, Elsevier, vol. 369(C).
    4. Chinnasamy, Subramaniyan & Arunachalam, Amarkarthik, 2023. "Experimental investigation on direct expansion solar-air source heat pump for water heating application," Renewable Energy, Elsevier, vol. 202(C), pages 222-233.
    5. Zou, Lingeng & Liu, Ye & Yu, Mengqi & Yu, Jianlin, 2023. "A review of solar assisted heat pump technology for drying applications," Energy, Elsevier, vol. 283(C).
    6. Cao, Jingyu & Zheng, Ling & Peng, Jinqing & Wang, Wenjie & Leung, Michael K.H. & Zheng, Zhanying & Hu, Mingke & Wang, Qiliang & Cai, Jingyong & Pei, Gang & Ji, Jie, 2023. "Advances in coupled use of renewable energy sources for performance enhancement of vapour compression heat pump: A systematic review of applications to buildings," Applied Energy, Elsevier, vol. 332(C).
    7. Chandan Swaroop Meena & Binju P Raj & Lohit Saini & Nehul Agarwal & Aritra Ghosh, 2021. "Performance Optimization of Solar-Assisted Heat Pump System for Water Heating Applications," Energies, MDPI, vol. 14(12), pages 1-17, June.
    8. Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    9. Margarete Afonso de Sousa Guilhon Araujo & Soraida Aguilar & Reinaldo Castro Souza & Fernando Luiz Cyrino Oliveira, 2024. "Global Horizontal Irradiance in Brazil: A Comparative Study of Reanalysis Datasets with Ground-Based Data," Energies, MDPI, vol. 17(20), pages 1-25, October.
    10. Dong, Yixiu & Yan, Hongzhi & Wang, Ruzhu, 2024. "Significant thermal upgrade via cascade high temperature heat pump with low GWP working fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    11. Liu, Ziyang & He, Mingfei & Tang, Xiaoping & Yuan, Guofeng & Yang, Bin & Yu, Xiaohui & Wang, Zhifeng, 2024. "Capacity optimisation and multi-dimensional analysis of air-source heat pump heating system: A case study," Energy, Elsevier, vol. 294(C).
    12. Li, Gang & Du, Yuqing, 2018. "Performance investigation and economic benefits of new control strategies for heat pump-gas fired water heater hybrid system," Applied Energy, Elsevier, vol. 232(C), pages 101-118.
    13. Xuebin Ma & Junfeng Li & Yucheng Ren & Reaihan E & Qiugang Wang & Jie Li & Sihui Huang & Mingguo Ma, 2022. "Performance and Economic Analysis of the Multi-Energy Complementary Heating System under Different Control Strategies in Cold Regions," Energies, MDPI, vol. 15(21), pages 1-17, November.
    14. Felten, Björn & Weber, Christoph, 2018. "The value(s) of flexible heat pumps – Assessment of technical and economic conditions," Applied Energy, Elsevier, vol. 228(C), pages 1292-1319.
    15. Li, Sihui & Gong, Guangcai & Peng, Jinqing, 2019. "Dynamic coupling method between air-source heat pumps and buildings in China’s hot-summer/cold-winter zone," Applied Energy, Elsevier, vol. 254(C).
    16. Zhenying Zhang & Jiaqi Wang & Meiyuan Yang & Kai Gong & Mei Yang, 2022. "Environmental and Economic Analysis of Heating Solutions for Rural Residences in China," Sustainability, MDPI, vol. 14(9), pages 1-15, April.
    17. Jingbing Sun & Youmu Xie & Sheng Zhou & Jiali Dan, 2024. "RETRACTED ARTICLE: The role of solar energy in achieving net-zero emission and green growth: a global analysis," Economic Change and Restructuring, Springer, vol. 57(2), pages 1-16, April.
    18. Jiang, Yan & Zhang, Huan & Wang, Yeming & Wang, Yaran & Liu, Minzhang & You, Shijun & Wu, Zhangxiang & Fan, Man & Wei, Shen, 2022. "Research on the operation strategies of the solar assisted heat pump with triangular solar air collector," Energy, Elsevier, vol. 246(C).
    19. Cai, Jingyong & Zhang, Feng & Ji, Jie, 2020. "Comparative analysis of solar-air dual source heat pump system with different heat source configurations," Renewable Energy, Elsevier, vol. 150(C), pages 191-203.
    20. Kutlu, Cagri & Zhang, Yanan & Elmer, Theo & Su, Yuehong & Riffat, Saffa, 2020. "A simulation study on performance improvement of solar assisted heat pump hot water system by novel controllable crystallization of supercooled PCMs," Renewable Energy, Elsevier, vol. 152(C), pages 601-612.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6045-:d:1534486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.