IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i13p2484-d243633.html
   My bibliography  Save this article

Combined Environmental and Economic Assessment of Energy Efficiency Measures in a Multi-Dwelling Building

Author

Listed:
  • Ricardo Ramírez-Villegas

    (School of Technology and Business Studies, Dalarna University, 791 88 Falun, Sweden
    Faculty of Engineering and Sustainable Development, University of Gävle, 801 76 Gävle, Sweden)

  • Ola Eriksson

    (Faculty of Engineering and Sustainable Development, University of Gävle, 801 76 Gävle, Sweden)

  • Thomas Olofsson

    (Department of Applied Physics and Electronics, Umeå University, 901 87 Umeå, Sweden)

Abstract

The aim of this study is to assess how different renovation scenarios affect the environmental and economic impacts of a multi-dwelling building in a Nordic climate, how these aspects are correlated and how different energy carriers affect different environmental impact categories. In order to reduce greenhouse gas emissions, the European Union has set an agenda in order to reduce energy use in buildings. New buildings on the European market have a low replacement rate, which makes building renovation an important factor for achieving the European Union goals. In this study, eight renovation strategies were analyzed following the European Committee for Standardization standards for life cycle assessment and life cycle costs of buildings. This study covers all life cycle steps from cradle to grave. The renovation scenarios include combinations of photovoltaics, geothermal heat pumps, heat recovery ventilation and improved building envelopes. Results show that, depending on the energy carrier, reductions in global warming potential can be achieved at the expense of an increased nuclear waste disposal. It also shows that for the investigated renovation strategies in Sweden there is no correlation between the economic and the environmental performance of the building. Changing energy carriers in Sweden in order to reduce greenhouse gas emissions can be a good alternative, but it makes the system more dependent on nuclear power.

Suggested Citation

  • Ricardo Ramírez-Villegas & Ola Eriksson & Thomas Olofsson, 2019. "Combined Environmental and Economic Assessment of Energy Efficiency Measures in a Multi-Dwelling Building," Energies, MDPI, vol. 12(13), pages 1-13, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2484-:d:243633
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/13/2484/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/13/2484/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ola Eriksson, 2017. "Nuclear Power and Resource Efficiency—A Proposal for a Revised Primary Energy Factor," Sustainability, MDPI, vol. 9(6), pages 1-10, June.
    2. Linus Malmgren & Kristina Mjörnell, 2015. "Application of a Decision Support Tool in Three Renovation Projects," Sustainability, MDPI, vol. 7(9), pages 1-18, September.
    3. Ricardo Ramírez-Villegas & Ola Eriksson & Thomas Olofsson, 2019. "Life Cycle Assessment of Building Renovation Measures–Trade-off between Building Materials and Energy," Energies, MDPI, vol. 12(3), pages 1-15, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Szymon Firląg, 2019. "Cost-Optimal Plus Energy Building in a Cold Climate," Energies, MDPI, vol. 12(20), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ricardo Ramírez-Villegas & Ola Eriksson & Thomas Olofsson, 2019. "Environmental Payback of Renovation Strategies in a Northern Climate—the Impact of Nuclear Power and Fossil Fuels in the Electricity Supply," Energies, MDPI, vol. 13(1), pages 1-13, December.
    2. Anna Życzyńska & Dariusz Majerek & Zbigniew Suchorab & Agnieszka Żelazna & Václav Kočí & Robert Černý, 2021. "Improving the Energy Performance of Public Buildings Equipped with Individual Gas Boilers Due to Thermal Retrofitting," Energies, MDPI, vol. 14(6), pages 1-19, March.
    3. Mohammad S. M. Almulhim & Dexter V. L. Hunt & Chris D. F. Rogers, 2020. "A Resilience and Environmentally Sustainable Assessment Framework (RESAF) for Domestic Building Materials in Saudi Arabia," Sustainability, MDPI, vol. 12(8), pages 1-24, April.
    4. Peep Pihelo & Kalle Kuusk & Targo Kalamees, 2020. "Development and Performance Assessment of Prefabricated Insulation Elements for Deep Energy Renovation of Apartment Buildings," Energies, MDPI, vol. 13(7), pages 1-20, April.
    5. Antonello Monsù Scolaro & Stefania De Medici, 2021. "Downcycling and Upcycling in Rehabilitation and Adaptive Reuse of Pre-Existing Buildings: Re-Designing Technological Performances in an Environmental Perspective," Energies, MDPI, vol. 14(21), pages 1-23, October.
    6. Kristina Mjörnell & Paula Femenías & Kerstin Annadotter, 2019. "Renovation Strategies for Multi-Residential Buildings from the Record Years in Sweden—Profit-Driven or Socioeconomically Responsible?," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    7. Rigby, Aidan & Lindley, Ben & Cullen, Jonathan, 2023. "An exergy based assessment of the efficiency of nuclear fuel cycles," Energy, Elsevier, vol. 264(C).
    8. Eglė Klumbytė & Raimondas Bliūdžius & Milena Medineckienė & Paris A. Fokaides, 2021. "An MCDM Model for Sustainable Decision-Making in Municipal Residential Buildings Facilities Management," Sustainability, MDPI, vol. 13(5), pages 1-16, March.
    9. Aniket Hirde & Amaiya Khardenavis & Rangan Banerjee & Manaswita Bose & V. S. S. Pavan Kumar Hari, 2023. "Energy and emissions analysis of the hyperloop transportation system," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8165-8196, August.
    10. Vidhyalakshmi Chandrasekaran & Jolanta Dvarioniene & Ausrine Vitkute & Giedrius Gecevicius, 2021. "Environmental Impact Assessment of Renovated Multi-Apartment Building Using LCA Approach: Case Study from Lithuania," Sustainability, MDPI, vol. 13(3), pages 1-18, February.
    11. Anna Życzyńska & Zbigniew Suchorab & Dariusz Majerek, 2020. "Influence of Thermal Retrofitting on Annual Energy Demand for Heating in Multi-Family Buildings," Energies, MDPI, vol. 13(18), pages 1-19, September.
    12. Jaroslav Košičan & Miguel Ángel Pardo Picazo & Silvia Vilčeková & Danica Košičanová, 2021. "Life Cycle Assessment and Economic Energy Efficiency of a Solar Thermal Installation in a Family House," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    13. Hamels, Sam & Himpe, Eline & Laverge, Jelle & Delghust, Marc & Van den Brande, Kjartan & Janssens, Arnold & Albrecht, Johan, 2021. "The use of primary energy factors and CO2 intensities for electricity in the European context - A systematic methodological review and critical evaluation of the contemporary literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    14. Robert Bucoń & Agata Czarnigowska, 2021. "Sequential Model for Long-Term Planning of Building Renewal and Capital Improvement," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    15. Ola Eriksson, 2017. "Energy and Waste Management," Energies, MDPI, vol. 10(7), pages 1-7, July.
    16. Moa Swing Gustafsson & Jonn Are Myhren & Erik Dotzauer & Marcus Gustafsson, 2019. "Life Cycle Cost of Building Energy Renovation Measures, Considering Future Energy Production Scenarios," Energies, MDPI, vol. 12(14), pages 1-15, July.
    17. Kwonsik Song & Yonghan Ahn & Joseph Ahn & Nahyun Kwon, 2019. "Development of an Energy Saving Strategy Model for Retrofitting Existing Buildings: A Korean Case Study," Energies, MDPI, vol. 12(9), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2484-:d:243633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.