IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i13p2455-d242984.html
   My bibliography  Save this article

The Use of CFD for the Design and Development of Innovative Configurations in Regenerative Glass Production Furnaces

Author

Listed:
  • Carlo Cravero

    (Department of Mechanical Engineering, DIME, Università di Genova, 16145 Genova, Italy)

  • Davide De Domenico

    (Department of Mechanical Engineering, DIME, Università di Genova, 16145 Genova, Italy)

Abstract

The limitation of nitrogen oxides emissions is nowadays a challenge in several engineering fields. Recent European regulations have reduced the maximum NO x emissions and therefore forced the glass production sector to develop emission reduction strategies. Two different systems have been developed within the framework of the European LIFE project and are currently applied to glass regenerative furnaces: the Waste Gas Recirculation (WGR) and the Hybrid Air Staging (HyAS). The above systems are primary NO x reduction strategies because they both operate to control the combustion evolution. Both WGR and HyAS systems have been conceived with the extensive use of Computational Fluid Dynamics (CFD) models: design strategies for both systems have been developed based on the use of CFD and are currently under use by glass furnace designers. In the present work, the CFD procedures routinely used for the design of the above systems are described. The systems effectiveness, due to the harsh conditions in the industrial installation, can be tested with oxygen concentration measurements inside the regenerators. The oxygen concentration is correlated to the flame evolution and therefore to the nitrogen oxides formation. For the above reason, the models have been validated with experimental data from pilot furnaces using measured values of O 2 mole fraction. The CFD procedures are described in the paper together with their application to different configurations.

Suggested Citation

  • Carlo Cravero & Davide De Domenico, 2019. "The Use of CFD for the Design and Development of Innovative Configurations in Regenerative Glass Production Furnaces," Energies, MDPI, vol. 12(13), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2455-:d:242984
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/13/2455/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/13/2455/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Davide Basso & Carlo Cravero & Andrea P. Reverberi & Bruno Fabiano, 2015. "CFD Analysis of Regenerative Chambers for Energy Efficiency Improvement in Glass Production Plants," Energies, MDPI, vol. 8(8), pages 1-17, August.
    2. Serge Roudier & Luis Delgado Sancho & Bianca Scalet & Marcos Garcia Muñoz & Aivi, 2013. "Best Available Techniques (BAT) Reference Document for the Manufacture of Glass: Industrial Emissions Directive 2010/75/EU:(Integrated Pollution Prevention and Control)," JRC Research Reports JRC78091, Joint Research Centre.
    3. Sardeshpande, Vishal & Anthony, Renil & Gaitonde, U.N. & Banerjee, Rangan, 2011. "Performance analysis for glass furnace regenerator," Applied Energy, Elsevier, vol. 88(12), pages 4451-4458.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlo Cravero & Davide Marsano, 2023. "Numerical Simulation of Melted Glass Flow Structures inside a Glass Furnace with Different Heat Release Profiles from Combustion," Energies, MDPI, vol. 16(10), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El-Behery, Samy M. & Hussien, A.A. & Kotb, H. & El-Shafie, Mostafa, 2017. "Performance evaluation of industrial glass furnace regenerator," Energy, Elsevier, vol. 119(C), pages 1119-1130.
    2. Mario Testa & Ornella Malandrino & Maria Rosaria Sessa & Stefania Supino & Daniela Sica, 2017. "Long-Term Sustainability from the Perspective of Cullet Recycling in the Container Glass Industry: Evidence from Italy," Sustainability, MDPI, vol. 9(10), pages 1-19, October.
    3. Alessandra Cantini & Leonardo Leoni & Filippo De Carlo & Marcello Salvio & Chiara Martini & Fabrizio Martini, 2021. "Technological Energy Efficiency Improvements in Cement Industries," Sustainability, MDPI, vol. 13(7), pages 1-28, March.
    4. Rossana Bellopede & Lorena Zichella & Paola Marini, 2020. "Glass Waste 3 : A Preliminary Study for a New Industrial Recovery Processing," Sustainability, MDPI, vol. 12(5), pages 1-11, March.
    5. Bo Gao & Chunsheng Wang & Yukun Hu & C. K. Tan & Paul Alun Roach & Liz Varga, 2018. "Function Value-Based Multi-Objective Optimisation of Reheating Furnace Operations Using Hooke-Jeeves Algorithm," Energies, MDPI, vol. 11(9), pages 1-18, September.
    6. Paul Suski & Klaus Wiesen, 2016. "Einsatz von Sekundärmaterial vs. recyclinggerechtes Design: Diskussion verschiedener End-of-Life-Allokationen unter Berücksichtigung der europäischen Abfallhierarchie [Use of secondary material vs ," Sustainability Nexus Forum, Springer, vol. 24(1), pages 7-13, June.
    7. Felipe Solferini de Carvalho & Luiz Carlos Bevilaqua dos Santos Reis & Pedro Teixeira Lacava & Fernando Henrique Mayworm de Araújo & João Andrade de Carvalho Jr., 2023. "Substitution of Natural Gas by Biomethane: Operational Aspects in Industrial Equipment," Energies, MDPI, vol. 16(2), pages 1-19, January.
    8. El-Shafie, Mostafa & Kambara, Shinji & Hayakawa, Yukio & Hussien, A.A., 2021. "Integration between energy and exergy analyses to assess the performance of furnace regenerative and ammonia decomposition systems," Renewable Energy, Elsevier, vol. 175(C), pages 232-243.
    9. Carlo Cravero & Davide Marsano, 2023. "Numerical Simulation of Melted Glass Flow Structures inside a Glass Furnace with Different Heat Release Profiles from Combustion," Energies, MDPI, vol. 16(10), pages 1-16, May.
    10. Wachter, Philipp & Gaber, Christian & Demuth, Martin & Hochenauer, Christoph, 2020. "Experimental investigation of tri-reforming on a stationary, recuperative TCR-reformer applied to an oxy-fuel combustion of natural gas, using a Ni-catalyst," Energy, Elsevier, vol. 212(C).
    11. Stack, Daniel C. & Curtis, Daniel & Forsberg, Charles, 2019. "Performance of firebrick resistance-heated energy storage for industrial heat applications and round-trip electricity storage," Applied Energy, Elsevier, vol. 242(C), pages 782-796.
    12. Davide Basso & Carlo Cravero & Andrea P. Reverberi & Bruno Fabiano, 2015. "CFD Analysis of Regenerative Chambers for Energy Efficiency Improvement in Glass Production Plants," Energies, MDPI, vol. 8(8), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2455-:d:242984. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.