IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i12p2372-d241506.html
   My bibliography  Save this article

Descriptive Statistical Analysis of Vegetable Oil Combustion in a Commercial Burner to Establish Optimal Operating Conditions

Author

Listed:
  • Julio San José

    (Department of Energy Engineering and Fluid Mechanics, ITAP, School of Industrial Engineering, University of Valladolid, Paseo del Cauce, 59, 47011 Valladolid, Spain)

  • Yolanda Arroyo

    (Department of Organic Chemistry, ITAP, School of Industrial Engineering, Universidad de Valladolid, Paseo del Cauce, 59, 47011 Valladolid, Spain)

  • María Ascensión Sanz-Tejedor

    (Department of Organic Chemistry, ITAP, School of Industrial Engineering, Universidad de Valladolid, Paseo del Cauce, 59, 47011 Valladolid, Spain)

Abstract

This article studies the combustion of refined sunflower, virgin sunflower and virgin rapeseed oils in a low-pressure auxiliary air fluid pulverization burner in order to establish the optimal operating conditions. The influence of varying the type of vegetable oil, fuel flow rate and secondary airflow rate in the combustion process was analyzed. These three factors are independent in the combustion process, which means having to carry out numerous assays, combining the various factors with one another. Given the amount of variables to be optimized and the existence of three factors, a statistical approach is adopted to help interpret the results obtained and to evaluate how each factor influences the combustion results. Optimal combustion is determined based on three criteria, minimum pollutant emissions (CO, NOx and CxHy), maximum combustion performance, and minimum excess air. The result of this study showed that airflow was the principal factor affecting emissions, whereas for combustion performance, both factors (airflow and fuel flow) were determinant. In general, admissible combustion performances were obtained, with CO and NOx emissions below permitted levels. The best combustion performance was achieved under conditions of maximum fuel flow and minimum airflow rates.

Suggested Citation

  • Julio San José & Yolanda Arroyo & María Ascensión Sanz-Tejedor, 2019. "Descriptive Statistical Analysis of Vegetable Oil Combustion in a Commercial Burner to Establish Optimal Operating Conditions," Energies, MDPI, vol. 12(12), pages 1-11, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2372-:d:241506
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/12/2372/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/12/2372/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ghorbani, Afshin & Bazooyar, Bahamin, 2012. "Optimization of the combustion of SOME (soybean oil methyl ester), B5, B10, B20 and petrodiesel in a semi industrial boiler," Energy, Elsevier, vol. 44(1), pages 217-227.
    2. Pereira, Caio & Wang, Gongliang & Costa, Mário, 2014. "Combustion of biodiesel in a large-scale laboratory furnace," Energy, Elsevier, vol. 74(C), pages 950-955.
    3. San José Alonso, Julio Fco. & López Sastre, Juan A. & Romero-Ávila, Cristina & Romero-Ávila, Enrique López & Izquierdo Iglesias, Carlos, 2005. "Using mixtures of diesel and sunflower oil as fuel for heating purposes in Castilla y León," Energy, Elsevier, vol. 30(5), pages 573-582.
    4. Macor, A. & Pavanello, P., 2009. "Performance and emissions of biodiesel in a boiler for residential heating," Energy, Elsevier, vol. 34(12), pages 2025-2032.
    5. Ghorbani, Afshin & Bazooyar, Bahamin & Shariati, Ahmad & Jokar, Seyyed Mohammad & Ajami, Hadi & Naderi, Ali, 2011. "A comparative study of combustion performance and emission of biodiesel blends and diesel in an experimental boiler," Applied Energy, Elsevier, vol. 88(12), pages 4725-4732.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. San José, J. & Sanz-Tejedor, M.A. & Arroyo, Y. & Stoychev, P., 2021. "Analysis of vegetable oil mixture combustion in a conventional 50 KW thermal energy installation," Renewable Energy, Elsevier, vol. 164(C), pages 1133-1142.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bazooyar, Bahamin & Hosseini, Seyyed Yaghoob & Moradi Ghoje Begloo, Solat & Shariati, Ahmad & Hashemabadi, Seyed Hassan & Shaahmadi, Fariborz, 2018. "Mixed modified Fe2O3-WO3 as new fuel borne catalyst (FBC) for biodiesel fuel," Energy, Elsevier, vol. 149(C), pages 438-453.
    2. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    3. Eko Supriyanto & Jayan Sentanuhady & Ariyana Dwiputra & Ari Permana & Muhammad Akhsin Muflikhun, 2021. "The Recent Progress of Natural Sources and Manufacturing Process of Biodiesel: A Review," Sustainability, MDPI, vol. 13(10), pages 1-26, May.
    4. Ghorbani, Afshin & Bazooyar, Bahamin, 2012. "Optimization of the combustion of SOME (soybean oil methyl ester), B5, B10, B20 and petrodiesel in a semi industrial boiler," Energy, Elsevier, vol. 44(1), pages 217-227.
    5. Oumer, A.N. & Hasan, M.M. & Baheta, Aklilu Tesfamichael & Mamat, Rizalman & Abdullah, A.A., 2018. "Bio-based liquid fuels as a source of renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 82-98.
    6. Ghorbani, Afshin & Rahimpour, Hamid Reza & Ghasemi, Younes & Zoughi, Somayeh & Rahimpour, Mohammad Reza, 2014. "A Review of Carbon Capture and Sequestration in Iran: Microalgal Biofixation Potential in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 73-100.
    7. Sungur, Bilal & Basar, Cem & Kaleli, Alirıza, 2023. "Multi-objective optimisation of the emission parameters and efficiency of pellet stove at different supply airflow positions based on machine learning approach," Energy, Elsevier, vol. 278(PA).
    8. Guo, Jinrui & Li, Fashe & Zhang, Huicong & Duan, Yaozong & Wang, Shuang & Tan, Fangguan & Chen, Yong & Lu, Fengju & Luo, Linglin, 2023. "Effects of fuel components and combustion parameters on the formation mechanism and emission characteristics of aldehydes from biodiesel combustion," Renewable Energy, Elsevier, vol. 219(P1).
    9. Kurji, H. & Valera-Medina, A. & Runyon, J. & Giles, A. & Pugh, D. & Marsh, R. & Cerone, N. & Zimbardi, F. & Valerio, V., 2016. "Combustion characteristics of biodiesel saturated with pyrolysis oil for power generation in gas turbines," Renewable Energy, Elsevier, vol. 99(C), pages 443-451.
    10. Tan, Kok Tat & Lee, Keat Teong, 2011. "A review on supercritical fluids (SCF) technology in sustainable biodiesel production: Potential and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2452-2456, June.
    11. Lee, Seungro & Kum, Sung-Min & Lee, Chang-Eon, 2011. "Performances of a heat exchanger and pilot boiler for the development of a condensing gas boiler," Energy, Elsevier, vol. 36(7), pages 3945-3951.
    12. Ghorbani, Afshin & Bazooyar, Bahamin & Shariati, Ahmad & Jokar, Seyyed Mohammad & Ajami, Hadi & Naderi, Ali, 2011. "A comparative study of combustion performance and emission of biodiesel blends and diesel in an experimental boiler," Applied Energy, Elsevier, vol. 88(12), pages 4725-4732.
    13. Tan, K.T. & Lee, K.T. & Mohamed, A.R., 2011. "Potential of waste palm cooking oil for catalyst-free biodiesel production," Energy, Elsevier, vol. 36(4), pages 2085-2088.
    14. Seraç, Mehmet Reşit & Aydın, Selman & Yılmaz, Adem & Şevik, Seyfi, 2020. "Evaluation of comparative combustion, performance, and emission of soybean-based alternative biodiesel fuel blends in a CI engine," Renewable Energy, Elsevier, vol. 148(C), pages 1065-1073.
    15. Miguel-Angel Perea-Moreno & Francisco Manzano-Agugliaro & Alberto-Jesus Perea-Moreno, 2018. "Sustainable Energy Based on Sunflower Seed Husk Boiler for Residential Buildings," Sustainability, MDPI, vol. 10(10), pages 1-20, September.
    16. Borah, Manash Jyoti & Devi, Anuchaya & Saikia, Raktim Abha & Deka, Dhanapati, 2018. "Biodiesel production from waste cooking oil catalyzed by in-situ decorated TiO2 on reduced graphene oxide nanocomposite," Energy, Elsevier, vol. 158(C), pages 881-889.
    17. Long, Yun-Duo & Fang, Zhen & Su, Tong-Chao & Yang, Qing, 2014. "Co-production of biodiesel and hydrogen from rapeseed and Jatropha oils with sodium silicate and Ni catalysts," Applied Energy, Elsevier, vol. 113(C), pages 1819-1825.
    18. Park, Ho Young & Han, Karam & Kim, Hyun Hee & Park, Sangbin & Jang, Jihoon & Yu, Geun Sil & Ko, Ji Ho, 2020. "Comparisons of combustion characteristics between bioliquid and heavy fuel oil combustion in a 0.7 MWth pilot furnace and a 75 MWe utility boiler," Energy, Elsevier, vol. 192(C).
    19. Oh, Jeongseog & Noh, Dongsoon, 2015. "Flame characteristics of a non-premixed oxy-fuel jet in a lab-scale furnace," Energy, Elsevier, vol. 81(C), pages 328-343.
    20. Deng, Xin & Fang, Zhen & Liu, Yun-hu & Yu, Chang-Liu, 2011. "Production of biodiesel from Jatropha oil catalyzed by nanosized solid basic catalyst," Energy, Elsevier, vol. 36(2), pages 777-784.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2372-:d:241506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.