IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i5p1511-d513785.html
   My bibliography  Save this article

Simulation Studies of Control Systems for Doubly Fed Induction Generator Supplied by the Current Source Converter

Author

Listed:
  • Paweł Kroplewski

    (Faculty of Electrical and Control Engineering, Gdańsk University of Technology, 80-233 Gdańsk, Poland)

  • Marcin Morawiec

    (Faculty of Electrical and Control Engineering, Gdańsk University of Technology, 80-233 Gdańsk, Poland)

  • Andrzej Jąderko

    (Faculty of Electrical Engineering, Czestochowa University of Technology, 42-201 Częstochowa, Poland)

  • Charles Odeh

    (Department of Electrical Engineering, University of Nigeria, Nsukka 410001, Nigeria)

Abstract

The control system for a Doubly Fed Induction Generator (DFIG) supplied by a grid-connected Current Source Converter (CSC) is presented in this paper. Nonlinear transformation of DFIG model to the multi-scalar form is proposed. The nonlinear control strategy of active and reactive power of DFIG is realized by feedback linearization. In the proposed control scheme, the DFIG model and CSI parameters are included. Two Proportional-Integral (PI) controllers are dedicated for the control of the respective active and reactive powers. The control variables are the dc-link input voltage vector and the angular speed of the inverter output current. The proposed control approach is characterized by satisfactional dynamics and provides enhanced quality of the power transferred to the grid. In the simulation, evaluation of the characteristic operating states of the generator system, correctness of the feedback linearization and the dynamics of active and reactive power control loops are studied. Simulation results are adequately provided.

Suggested Citation

  • Paweł Kroplewski & Marcin Morawiec & Andrzej Jąderko & Charles Odeh, 2021. "Simulation Studies of Control Systems for Doubly Fed Induction Generator Supplied by the Current Source Converter," Energies, MDPI, vol. 14(5), pages 1-16, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1511-:d:513785
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/5/1511/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/5/1511/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Krzysztof Blecharz & Marcin Morawiec, 2019. "Nonlinear Control of a Doubly Fed Generator Supplied by a Current Source Inverter," Energies, MDPI, vol. 12(12), pages 1-15, June.
    2. Roland Ryndzionek & Łukasz Sienkiewicz, 2020. "Evolution of the HVDC Link Connecting Offshore Wind Farms to Onshore Power Systems," Energies, MDPI, vol. 13(8), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Habib Benbouhenni & Nicu Bizon, 2021. "Advanced Direct Vector Control Method for Optimizing the Operation of a Double-Powered Induction Generator-Based Dual-Rotor Wind Turbine System," Mathematics, MDPI, vol. 9(19), pages 1-36, September.
    2. Habib Benbouhenni & Nicu Bizon, 2021. "A Synergetic Sliding Mode Controller Applied to Direct Field-Oriented Control of Induction Generator-Based Variable Speed Dual-Rotor Wind Turbines," Energies, MDPI, vol. 14(15), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michał Michna & Filip Kutt & Łukasz Sienkiewicz & Roland Ryndzionek & Grzegorz Kostro & Dariusz Karkosiński & Bartłomiej Grochowski, 2020. "Mechanical-Level Hardware-In-The-Loop and Simulation in Validation Testing of Prototype Tower Crane Drives," Energies, MDPI, vol. 13(21), pages 1-25, November.
    2. Cullinane, M. & Judge, F. & O'Shea, M. & Thandayutham, K. & Murphy, J., 2022. "Subsea superconductors: The future of offshore renewable energy transmission?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Mohsin Ali Koondhar & Ghulam Sarwar Kaloi & Abdul Sattar Saand & Sadullah Chandio & Wonsuk Ko & Sisam Park & Hyeong-Jin Choi & Ragab Abdelaziz El-Sehiemy, 2023. "Critical Technical Issues with a Voltage-Source-Converter-Based High Voltage Direct Current Transmission System for the Onshore Integration of Offshore Wind Farms," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    4. Huanhuan Luo & Weichun Ge & Jingzhuo Sun & Quanyuan Jiang & Yuzhong Gong, 2021. "Using Thermal Energy Storage to Relieve Wind Generation Curtailment in an Island Microgrid," Energies, MDPI, vol. 14(10), pages 1-15, May.
    5. Wojciech Sleszynski & Artur Cichowski & Piotr Mysiak, 2020. "Suppression of Supply Current Harmonics of 18-Pulse Diode Rectifier by Series Active Power Filter with LC Coupling," Energies, MDPI, vol. 13(22), pages 1-12, November.
    6. Nezha Mejjad & Marzia Rovere, 2021. "Understanding the Impacts of Blue Economy Growth on Deep-Sea Ecosystem Services," Sustainability, MDPI, vol. 13(22), pages 1-26, November.
    7. Daniel Wachowiak, 2021. "A Universal Gains Selection Method for Speed Observers of Induction Machine," Energies, MDPI, vol. 14(20), pages 1-19, October.
    8. Hamoud Alafnan & Xiaoze Pei & Diaa-Eldin A. Mansour & Moanis Khedr & Wenjuan Song & Ibrahim Alsaleh & Abdullah Albaker & Mansoor Alturki & Xianwu Zeng, 2023. "Impact of Copper Stabilizer Thickness on SFCL Performance with PV-Based DC Systems Using a Multilayer Thermoelectric Model," Sustainability, MDPI, vol. 15(9), pages 1-15, April.
    9. Saran Ganesh & Arcadio Perilla & Jose Rueda Torres & Peter Palensky & Aleksandra Lekić & Mart van der Meijden, 2021. "Generic EMT Model for Real-Time Simulation of Large Disturbances in 2 GW Offshore HVAC-HVDC Renewable Energy Hubs," Energies, MDPI, vol. 14(3), pages 1-30, February.
    10. Sophie Coffey & Victor Timmers & Rui Li & Guanglu Wu & Agustí Egea-Àlvarez, 2021. "Review of MVDC Applications, Technologies, and Future Prospects," Energies, MDPI, vol. 14(24), pages 1-36, December.
    11. Danilo Herrera & Thiago Tricarico & Diego Oliveira & Mauricio Aredes & Eduardo Galván-Díez & Juan M. Carrasco, 2022. "Advanced Local Grid Control System for Offshore Wind Turbines with the Diode-Based Rectifier HVDC Link Implemented in a True Scalable Test Bench," Energies, MDPI, vol. 15(16), pages 1-21, August.
    12. Cleiton M. Freitas & Edson H. Watanabe & Luís F. C. Monteiro, 2023. "d-q Small-Signal Model for Grid-Forming MMC and Its Application in Electromagnetic-Transient Simulations," Energies, MDPI, vol. 16(5), pages 1-22, February.
    13. Juan-Manuel Roldan-Fernandez & Javier Serrano-Gonzalez & Francisco Gonzalez-Longatt & Manuel Burgos-Payan, 2021. "Impact of Spanish Offshore Wind Generation in the Iberian Electricity Market: Potential Savings and Policy Implications," Energies, MDPI, vol. 14(15), pages 1-17, July.
    14. Heng Nian & Xiao Jin, 2021. "Modeling and Analysis of Transient Reactive Power Characteristics of DFIG Considering Crowbar Circuit under Ultra HVDC Commutation Failure," Energies, MDPI, vol. 14(10), pages 1-17, May.
    15. Xingliang Liu & Guiyun Tian & Yu Chen & Haoze Luo & Jian Zhang & Wuhua Li, 2020. "Non-Contact Degradation Evaluation for IGBT Modules Using Eddy Current Pulsed Thermography Approach," Energies, MDPI, vol. 13(10), pages 1-14, May.
    16. Daniel Wachowiak, 2020. "Genetic Algorithm Approach for Gains Selection of Induction Machine Extended Speed Observer," Energies, MDPI, vol. 13(18), pages 1-24, September.
    17. Neville R. Watson & Jeremy D. Watson, 2020. "An Overview of HVDC Technology," Energies, MDPI, vol. 13(17), pages 1-35, August.
    18. Wang Hu & Yunxiang Xie & Zhiping Wang & Zhi Zhang, 2020. "A Novel Three-Phase Current Source Rectifier Based on an Asymmetrical Structure to Reduce Stress on Semiconductor Devices," Energies, MDPI, vol. 13(13), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1511-:d:513785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.