IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i11p2046-d235080.html
   My bibliography  Save this article

State Rules Mining and Probabilistic Fault Analysis for 5 MW Offshore Wind Turbines

Author

Listed:
  • Xiaoyi Qian

    (School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China)

  • Yuxian Zhang

    (School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China)

  • Mohammed Gendeel

    (School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China)

Abstract

Research on fault identification for wind turbines (WTs) is a widespread concern. However, the identification accuracy in existing research is vulnerable to uncertainty in the operation data, and the identification results lack interpretability. In this paper, a data-driven method for fault identification of offshore WTs is presented. The main idea is to improve fault identification accuracy and facilitate the probabilistic sorting of possible faults with critical variables so as to provide abundant and reliable reference information for maintenance personnel. In the stage of state rule mining, representative initial rules are generated via the combination of a clustering algorithm and heuristic learning. Then, a multi-population quantum evolutionary algorithm is utilized to optimize the rule base. In the stage of fault identification, abnormal states are identified via a fuzzy rule-based classification system, and probabilistic fault sorting with critical variables is realized according to the fuzzy reasoning of state rules. Ten common sensor and actuator faults in 5 MW offshore WTs are taken to verify the feasibility and superiority of the proposed scheme. Experimental results demonstrate that the proposed method has higher identification accuracy than other identification methods and thus prove the feasibility of the proposed probabilistic fault analysis scheme.

Suggested Citation

  • Xiaoyi Qian & Yuxian Zhang & Mohammed Gendeel, 2019. "State Rules Mining and Probabilistic Fault Analysis for 5 MW Offshore Wind Turbines," Energies, MDPI, vol. 12(11), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2046-:d:235080
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/11/2046/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/11/2046/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Quan Zhou & Taotao Xiong & Mubin Wang & Chenmeng Xiang & Qingpeng Xu, 2017. "Diagnosis and Early Warning of Wind Turbine Faults Based on Cluster Analysis Theory and Modified ANFIS," Energies, MDPI, vol. 10(7), pages 1-15, July.
    2. Bi, Ran & Zhou, Chengke & Hepburn, Donald M., 2017. "Detection and classification of faults in pitch-regulated wind turbine generators using normal behaviour models based on performance curves," Renewable Energy, Elsevier, vol. 105(C), pages 674-688.
    3. Pierre Tchakoua & René Wamkeue & Mohand Ouhrouche & Fouad Slaoui-Hasnaoui & Tommy Andy Tameghe & Gabriel Ekemb, 2014. "Wind Turbine Condition Monitoring: State-of-the-Art Review, New Trends, and Future Challenges," Energies, MDPI, vol. 7(4), pages 1-36, April.
    4. Zanon, Alessandro & De Gennaro, Michele & Kühnelt, Helmut, 2018. "Wind energy harnessing of the NREL 5 MW reference wind turbine in icing conditions under different operational strategies," Renewable Energy, Elsevier, vol. 115(C), pages 760-772.
    5. Cho, Seongpil & Gao, Zhen & Moan, Torgeir, 2018. "Model-based fault detection, fault isolation and fault-tolerant control of a blade pitch system in floating wind turbines," Renewable Energy, Elsevier, vol. 120(C), pages 306-321.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
    2. Kong, Yun & Wang, Tianyang & Chu, Fulei, 2019. "Meshing frequency modulation assisted empirical wavelet transform for fault diagnosis of wind turbine planetary ring gear," Renewable Energy, Elsevier, vol. 132(C), pages 1373-1388.
    3. Zemali, Zakaria & Cherroun, Lakhmissi & Hadroug, Nadji & Hafaifa, Ahmed & Iratni, Abdelhamid & Alshammari, Obaid S. & Colak, Ilhami, 2023. "Robust intelligent fault diagnosis strategy using Kalman observers and neuro-fuzzy systems for a wind turbine benchmark," Renewable Energy, Elsevier, vol. 205(C), pages 873-898.
    4. Hong Wang & Hongbin Wang & Guoqian Jiang & Jimeng Li & Yueling Wang, 2019. "Early Fault Detection of Wind Turbines Based on Operational Condition Clustering and Optimized Deep Belief Network Modeling," Energies, MDPI, vol. 12(6), pages 1-22, March.
    5. Cheng Xiao & Zuojun Liu & Tieling Zhang & Lei Zhang, 2019. "On Fault Prediction for Wind Turbine Pitch System Using Radar Chart and Support Vector Machine Approach," Energies, MDPI, vol. 12(14), pages 1-18, July.
    6. Sales-Setién, Ester & Peñarrocha-Alós, Ignacio, 2020. "Robust estimation and diagnosis of wind turbine pitch misalignments at a wind farm level," Renewable Energy, Elsevier, vol. 146(C), pages 1746-1765.
    7. Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
    8. Habibi, Hamed & Howard, Ian & Simani, Silvio, 2019. "Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review," Renewable Energy, Elsevier, vol. 135(C), pages 877-896.
    9. Akintayo T. Abolude & Wen Zhou, 2018. "A Comparative Computational Fluid Dynamic Study on the Effects of Terrain Type on Hub-Height Wind Aerodynamic Properties," Energies, MDPI, vol. 12(1), pages 1-14, December.
    10. Camila Correa-Jullian & Sergio Cofre-Martel & Gabriel San Martin & Enrique Lopez Droguett & Gustavo de Novaes Pires Leite & Alexandre Costa, 2022. "Exploring Quantum Machine Learning and Feature Reduction Techniques for Wind Turbine Pitch Fault Detection," Energies, MDPI, vol. 15(8), pages 1-29, April.
    11. Arkaitz Rabanal & Alain Ulazia & Gabriel Ibarra-Berastegi & Jon Sáenz & Unai Elosegui, 2018. "MIDAS: A Benchmarking Multi-Criteria Method for the Identification of Defective Anemometers in Wind Farms," Energies, MDPI, vol. 12(1), pages 1-19, December.
    12. Przemyslaw Baranski & Piotr Pietrzak, 2016. "Computational Effective Fault Detection by Means of Signature Functions," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-20, March.
    13. Ivan Marović & Ivana Sušanj & Nevenka Ožanić, 2017. "Development of ANN Model for Wind Speed Prediction as a Support for Early Warning System," Complexity, Hindawi, vol. 2017, pages 1-10, December.
    14. García Márquez, Fausto Pedro & Peco Chacón, Ana María, 2020. "A review of non-destructive testing on wind turbines blades," Renewable Energy, Elsevier, vol. 161(C), pages 998-1010.
    15. Wang, Xuefei & Zeng, Xiangwu & Li, Xinyao & Li, Jiale, 2019. "Investigation on offshore wind turbine with an innovative hybrid monopile foundation: An experimental based study," Renewable Energy, Elsevier, vol. 132(C), pages 129-141.
    16. Truong, Hoai Vu Anh & Dang, Tri Dung & Vo, Cong Phat & Ahn, Kyoung Kwan, 2022. "Active control strategies for system enhancement and load mitigation of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    17. Dibaj, Ali & Gao, Zhen & Nejad, Amir R., 2023. "Fault detection of offshore wind turbine drivetrains in different environmental conditions through optimal selection of vibration measurements," Renewable Energy, Elsevier, vol. 203(C), pages 161-176.
    18. Qian, XiaoYi & Sun, TianHe & Zhang, YuXian & Wang, BaoShi & Awad Gendeel, Mohammed Altayeb, 2023. "Wind turbine fault detection based on spatial-temporal feature and neighbor operation state," Renewable Energy, Elsevier, vol. 219(P1).
    19. Wenbin Su & Hongbo Wei & Penghua Guo & Ruizhe Guo, 2021. "Remote Monitoring and Fault Diagnosis of Ocean Current Energy Hydraulic Transmission and Control Power Generation System," Energies, MDPI, vol. 14(13), pages 1-18, July.
    20. Azizi, Askar & Nourisola, Hamid & Shoja-Majidabad, Sajjad, 2019. "Fault tolerant control of wind turbines with an adaptive output feedback sliding mode controller," Renewable Energy, Elsevier, vol. 135(C), pages 55-65.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2046-:d:235080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.