IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i4p876-d140275.html
   My bibliography  Save this article

Real-Time Simulation and Hardware-in-the-Loop Testbed for Distribution Synchrophasor Applications

Author

Listed:
  • Matthias Stifter

    (Center for Energy, Austrian Institute of Technology, Vienna 1210, Austria
    These authors contributed equally to this work.)

  • Jose Cordova

    (Electrical & Computer Engineering Department, Center for Advanced Power Systems, Florida State University, Tallahassee, FL 32306, USA
    These authors contributed equally to this work.)

  • Jawad Kazmi

    (Center for Energy, Austrian Institute of Technology, Vienna 1210, Austria)

  • Reza Arghandeh

    (Electrical & Computer Engineering Department, Center for Advanced Power Systems, Florida State University, Tallahassee, FL 32306, USA)

Abstract

With the advent of Distribution Phasor Measurement Units (D-PMUs) and Micro-Synchrophasors (Micro-PMUs), the situational awareness in power distribution systems is going to the next level using time-synchronization. However, designing, analyzing, and testing of such accurate measurement devices are still challenging. Due to the lack of available knowledge and sufficient history for synchrophasors’ applications at the power distribution level, the realistic simulation, and validation environments are essential for D-PMU development and deployment. This paper presents a vendor agnostic PMU real-time simulation and hardware-in-the-Loop (PMU-RTS-HIL) testbed, which helps in multiple PMUs validation and studies. The network of real and virtual PMUs was built in a full time-synchronized environment for PMU applications’ validation. The proposed testbed also includes an emulated communication network (CNS) layer to replicate bandwidth, packet loss and collisions conditions inherent to the PMUs data streams’ issues. Experimental results demonstrate the flexibility and scalability of the developed PMU-RTS-HIL testbed by producing large amounts of measurements under typical normal and abnormal distribution grid operation conditions.

Suggested Citation

  • Matthias Stifter & Jose Cordova & Jawad Kazmi & Reza Arghandeh, 2018. "Real-Time Simulation and Hardware-in-the-Loop Testbed for Distribution Synchrophasor Applications," Energies, MDPI, vol. 11(4), pages 1-21, April.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:876-:d:140275
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/4/876/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/4/876/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luis Ibarra & Antonio Rosales & Pedro Ponce & Arturo Molina & Raja Ayyanar, 2017. "Overview of Real-Time Simulation as a Supporting Effort to Smart-Grid Attainment," Energies, MDPI, vol. 10(6), pages 1-24, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xizheng Guo & Jiaqi Yuan & Yiguo Tang & Xiaojie You, 2018. "Hardware in the Loop Real-time Simulation for the Associated Discrete Circuit Modeling Optimization Method of Power Converters," Energies, MDPI, vol. 11(11), pages 1-14, November.
    2. Thomas I. Strasser & Sebastian Rohjans & Graeme M. Burt, 2019. "Methods and Concepts for Designing and Validating Smart Grid Systems," Energies, MDPI, vol. 12(10), pages 1-5, May.
    3. Goran Petrovic & Juraj Alojzije Bosnic & Goran Majic & Marin Despalatovic, 2019. "A Design of PWM Controlled Calibrator of Non-Sinusoidal Voltage Waveforms," Energies, MDPI, vol. 12(10), pages 1-14, May.
    4. Gaurav Yadav & Yuan Liao & Austin D. Burfield, 2023. "Hardware-in-the-Loop Testing for Protective Relays Using Real Time Digital Simulator (RTDS)," Energies, MDPI, vol. 16(3), pages 1-30, January.
    5. Juan Montoya & Ron Brandl & Keerthi Vishwanath & Jay Johnson & Rachid Darbali-Zamora & Adam Summers & Jun Hashimoto & Hiroshi Kikusato & Taha Selim Ustun & Nayeem Ninad & Estefan Apablaza-Arancibia & , 2020. "Advanced Laboratory Testing Methods Using Real-Time Simulation and Hardware-in-the-Loop Techniques: A Survey of Smart Grid International Research Facility Network Activities," Energies, MDPI, vol. 13(12), pages 1-38, June.
    6. Stavros Lazarou & Vasiliki Vita & Lambros Ekonomou, 2018. "Protection Schemes of Meshed Distribution Networks for Smart Grids and Electric Vehicles," Energies, MDPI, vol. 11(11), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Elkamel, 2018. "Energy Production Systems," Energies, MDPI, vol. 11(10), pages 1-4, September.
    2. Ignacio Llanez-Caballero & Luis Ibarra & Angel Peña-Quintal & Glendy Catzín-Contreras & Pedro Ponce & Arturo Molina & Ricardo Ramirez-Mendoza, 2023. "The “Smart” Concept from an Electrical Sustainability Viewpoint," Energies, MDPI, vol. 16(7), pages 1-22, March.
    3. Juan Roberto López Gutiérrez & Pedro Ponce & Arturo Molina, 2021. "Real-Time Power Electronics Laboratory to Strengthen Distance Learning Engineering Education on Smart Grids and Microgrids," Future Internet, MDPI, vol. 13(9), pages 1-16, September.
    4. Juan R. Lopez & Jose de Jesus Camacho & Pedro Ponce & Brian MacCleery & Arturo Molina, 2022. "A Real-Time Digital Twin and Neural Net Cluster-Based Framework for Faults Identification in Power Converters of Microgrids, Self Organized Map Neural Network," Energies, MDPI, vol. 15(19), pages 1-25, October.
    5. Paweł Szcześniak & Iwona Grobelna & Mateja Novak & Ulrik Nyman, 2021. "Overview of Control Algorithm Verification Methods in Power Electronics Systems," Energies, MDPI, vol. 14(14), pages 1-20, July.
    6. Moiz Muhammad & Holger Behrends & Stefan Geißendörfer & Karsten von Maydell & Carsten Agert, 2021. "Power Hardware-in-the-Loop: Response of Power Components in Real-Time Grid Simulation Environment," Energies, MDPI, vol. 14(3), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:876-:d:140275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.