IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i4p539-d95894.html
   My bibliography  Save this article

Energy Recovery from Waste Incineration—The Importance of Technology Data and System Boundaries on CO 2 Emissions

Author

Listed:
  • Ola Eriksson

    (Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, University of Gävle, SE 801 76 Gävle, Sweden)

  • Göran Finnveden

    (Division of Environmental Strategies Research–fms, Department of Sustainable Development, Environmental Sciences and Engineering (SEED), School of Architecture and the Built Environment, KTH Royal Institute of Technology, SE 100 44 Stockholm, Sweden)

Abstract

Previous studies on waste incineration as part of the energy system show that waste management and energy supply are highly dependent on each other, and that the preconditions for the energy system setup affects the avoided emissions and thereby even sometimes the total outcome of an environmental assessment. However, it has not been previously shown explicitly which key parameters are most crucial, how much each parameter affects results and conclusions and how different aspects depend on each other. The interconnection between waste incineration and the energy system is elaborated by testing parameters potentially crucial to the result: design of the incineration plant, avoided energy generation, degree of efficiency, electricity efficiency in combined heat and power plants (CHP), avoided fuel, emission level of the avoided electricity generation and avoided waste management. CO 2 emissions have been calculated for incineration of 1 kWh mixed combustible waste. The results indicate that one of the most important factors is the electricity efficiency in CHP plants in combination with the emission level of the avoided electricity generation. A novel aspect of this study is the plant by plant comparison showing how different electricity efficiencies associated with different types of fuels and plants influence results. Since waste incineration typically have lower power to fuel ratios, this has implications for further analyses of waste incineration compared to other waste management practises and heat and power production technologies. New incineration capacity should substitute mixed landfill disposal and recovered energy should replace energy from inefficient high polluting plants. Electricity generation must not be lost, as it has to be compensated for by electricity production affecting the overall results.

Suggested Citation

  • Ola Eriksson & Göran Finnveden, 2017. "Energy Recovery from Waste Incineration—The Importance of Technology Data and System Boundaries on CO 2 Emissions," Energies, MDPI, vol. 10(4), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:539-:d:95894
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/4/539/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/4/539/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eriksson, Ola & Finnveden, Goran & Ekvall, Tomas & Bjorklund, Anna, 2007. "Life cycle assessment of fuels for district heating: A comparison of waste incineration, biomass- and natural gas combustion," Energy Policy, Elsevier, vol. 35(2), pages 1346-1362, February.
    2. Persson, Urban & Münster, Marie, 2016. "Current and future prospects for heat recovery from waste in European district heating systems: A literature and data review," Energy, Elsevier, vol. 110(C), pages 116-128.
    3. Holmgren, Kristina, 2006. "Role of a district-heating network as a user of waste-heat supply from various sources - the case of Göteborg," Applied Energy, Elsevier, vol. 83(12), pages 1351-1367, December.
    4. Knutsson, David & Sahlin, Jenny & Werner, Sven & Ekvall, Tomas & Ahlgren, Erik O., 2006. "HEATSPOT—a simulation tool for national district heating analyses," Energy, Elsevier, vol. 31(2), pages 278-293.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Long Zhang & Wuliyasu Bai & Jingzheng Ren, 2023. "Waste-to-Energy: A Midas Touch for Turning Waste into Energy," Energies, MDPI, vol. 16(5), pages 1-5, February.
    2. Antonio Sánchez Cordero & Sergio Gómez Melgar & José Manuel Andújar Márquez, 2019. "Green Building Rating Systems and the New Framework Level(s): A Critical Review of Sustainability Certification within Europe," Energies, MDPI, vol. 13(1), pages 1-25, December.
    3. Karlsson, Johan & Brunzell, Lena & Venkatesh, G., 2018. "Material-flow analysis, energy analysis, and partial environmental-LCA of a district-heating combined heat and power plant in Sweden," Energy, Elsevier, vol. 144(C), pages 31-40.
    4. Ana Ramos & Carlos Afonso Teixeira & Abel Rouboa, 2018. "Environmental Analysis of Waste-to-Energy—A Portuguese Case Study," Energies, MDPI, vol. 11(3), pages 1-26, March.
    5. Ana Ramos & Carlos Afonso Teixeira & Abel Rouboa, 2019. "Environmental Assessment of Municipal Solid Waste by Two-Stage Plasma Gasification," Energies, MDPI, vol. 12(1), pages 1-16, January.
    6. Carmen Callao & M. Pilar Latorre & Margarita Martinez-Núñez, 2021. "Understanding Hazardous Waste Exports for Disposal in Europe: A Contribution to Sustainable Development," Sustainability, MDPI, vol. 13(16), pages 1-14, August.
    7. Barbara Mendecka & Lidia Lombardi & Paweł Gładysz & Wojciech Stanek, 2018. "Exergo-Ecological Assessment of Waste to Energy Plants Supported by Solar Energy," Energies, MDPI, vol. 11(4), pages 1-20, March.
    8. Dinko Đurđević & Paolo Blecich & Željko Jurić, 2019. "Energy Recovery from Sewage Sludge: The Case Study of Croatia," Energies, MDPI, vol. 12(10), pages 1-19, May.
    9. Broberg, Thomas & Dijkgraaf, Elbert & Meens-Eriksson, Sef, 2022. "Burn or let them bury? The net social cost of producing district heating from imported waste," Energy Economics, Elsevier, vol. 105(C).
    10. Stergios Vakalis & Konstantinos Moustakas, 2019. "Applications of the 3T Method and the R1 Formula as Efficiency Assessment Tools for Comparing Waste-to-Energy and Landfilling," Energies, MDPI, vol. 12(6), pages 1-11, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezaie, Behnaz & Rosen, Marc A., 2012. "District heating and cooling: Review of technology and potential enhancements," Applied Energy, Elsevier, vol. 93(C), pages 2-10.
    2. Ali Mohammadi & G. Venkatesh & Maria Sandberg & Samieh Eskandari & Stephen Joseph & Karin Granström, 2020. "A Comprehensive Environmental Life Cycle Assessment of the Use of Hydrochar Pellets in Combined Heat and Power Plants," Sustainability, MDPI, vol. 12(21), pages 1-15, October.
    3. Broberg, Thomas & Dijkgraaf, Elbert & Meens-Eriksson, Sef, 2022. "Burn or let them bury? The net social cost of producing district heating from imported waste," Energy Economics, Elsevier, vol. 105(C).
    4. Sandvall, Akram Fakhri & Ahlgren, Erik O. & Ekvall, Tomas, 2016. "System profitability of excess heat utilisation – A case-based modelling analysis," Energy, Elsevier, vol. 97(C), pages 424-434.
    5. Münster, Marie & Meibom, Peter, 2011. "Optimization of use of waste in the future energy system," Energy, Elsevier, vol. 36(3), pages 1612-1622.
    6. Münster, Marie & Lund, Henrik, 2009. "Use of waste for heat, electricity and transport—Challenges when performing energy system analysis," Energy, Elsevier, vol. 34(5), pages 636-644.
    7. Moser, Simon & Puschnigg, Stefan & Rodin, Valerie, 2020. "Designing the Heat Merit Order to determine the value of industrial waste heat for district heating systems," Energy, Elsevier, vol. 200(C).
    8. Sandvall, Akram Fakhri & Börjesson, Martin & Ekvall, Tomas & Ahlgren, Erik O., 2015. "Modelling environmental and energy system impacts of large-scale excess heat utilisation – A regional case study," Energy, Elsevier, vol. 79(C), pages 68-79.
    9. Jie, Pengfei & Kong, Xiangfei & Rong, Xian & Xie, Shangqun, 2016. "Selecting the optimum pressure drop per unit length of district heating piping network based on operating strategies," Applied Energy, Elsevier, vol. 177(C), pages 341-353.
    10. Amiri, Shahnaz & Weinberger, Gottfried, 2018. "Increased cogeneration of renewable electricity through energy cooperation in a Swedish district heating system - A case study," Renewable Energy, Elsevier, vol. 116(PA), pages 866-877.
    11. Weinberger, Gottfried & Amiri, Shahnaz & Moshfegh, Bahram, 2017. "On the benefit of integration of a district heating system with industrial excess heat: An economic and environmental analysis," Applied Energy, Elsevier, vol. 191(C), pages 454-468.
    12. Karlsson, Johan & Brunzell, Lena & Venkatesh, G., 2018. "Material-flow analysis, energy analysis, and partial environmental-LCA of a district-heating combined heat and power plant in Sweden," Energy, Elsevier, vol. 144(C), pages 31-40.
    13. Werner, Sven, 2017. "District heating and cooling in Sweden," Energy, Elsevier, vol. 126(C), pages 419-429.
    14. Persson, U. & Möller, B. & Werner, S., 2014. "Heat Roadmap Europe: Identifying strategic heat synergy regions," Energy Policy, Elsevier, vol. 74(C), pages 663-681.
    15. Camille Jeandaux & Jean-Baptiste Videau & Anne Prieur-Vernat, 2021. "Life Cycle Assessment of District Heating Systems in Europe: Case Study and Recommendations," Sustainability, MDPI, vol. 13(20), pages 1-32, October.
    16. Fahlén, E. & Ahlgren, E.O., 2009. "Assessment of integration of different biomass gasification alternatives in a district-heating system," Energy, Elsevier, vol. 34(12), pages 2184-2195.
    17. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
    18. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    19. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    20. Rämä, Miika & Wahlroos, Mikko, 2018. "Introduction of new decentralised renewable heat supply in an existing district heating system," Energy, Elsevier, vol. 154(C), pages 68-79.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:539-:d:95894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.