IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i9p2458-d170181.html
   My bibliography  Save this article

THD Reduction in Wind Energy System Using Type-4 Wind Turbine/PMSG Applying the Active Front-End Converter Parallel Operation

Author

Listed:
  • Nadia Maria Salgado-Herrera

    (Institute for Energy and Environment, University of Strathclyde, Glasgow G1 1XW, UK)

  • David Campos-Gaona

    (Institute for Energy and Environment, University of Strathclyde, Glasgow G1 1XW, UK)

  • Olimpo Anaya-Lara

    (Institute for Energy and Environment, University of Strathclyde, Glasgow G1 1XW, UK)

  • Aurelio Medina-Rios

    (Facultad de Ingenieria Electrica, División de estudios de posgrado, Universidad Michoacana de San Nicolas de Hidalgo, Morelia 58030, Mexico)

  • Roberto Tapia-Sánchez

    (Facultad de Ingenieria Electrica, División de estudios de posgrado, Universidad Michoacana de San Nicolas de Hidalgo, Morelia 58030, Mexico)

  • Juan Ramon Rodríguez-Rodríguez

    (Facultad de Ingeniería; Departamento de Energía, Eléctrica Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico)

Abstract

In this paper, the active front-end (AFE) converter topology for the total harmonic distortion (THD) reduction in a wind energy system (WES) is used. A higher THD results in serious pulsations in the wind turbine (WT) output power and several power losses at the WES. The AFE converter topology improves the capability, efficiency, and reliability in the energy conversion devices; by modifying a conventional back-to-back converter, from using a single voltage source converter (VSC) to use p VSC connected in parallel, the AFE converter is generated. The THD reduction is achieved by applying a different phase shift angle at the carrier of digital sinusoidal pulse width modulation (DSPWM) switching signals of each VSC. To verify the functionality of the proposed methodology, the WES simulation in Matlab-Simulink ® (Matlab r2015b, Mathworks, Natick, MA, USA) is analyzed, and the experimental laboratory tests using the concept of rapid control prototyping (RCP) and the real-time simulator Opal-RT Technologies ® (Montreal, QC, Canada) is achieved. The obtained results show a type-4 WT with a total output power of 6 MVA, generating a THD reduction up to 5.5 times of the total WES current output by Fourier series expansion.

Suggested Citation

  • Nadia Maria Salgado-Herrera & David Campos-Gaona & Olimpo Anaya-Lara & Aurelio Medina-Rios & Roberto Tapia-Sánchez & Juan Ramon Rodríguez-Rodríguez, 2018. "THD Reduction in Wind Energy System Using Type-4 Wind Turbine/PMSG Applying the Active Front-End Converter Parallel Operation," Energies, MDPI, vol. 11(9), pages 1-23, September.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2458-:d:170181
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/9/2458/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/9/2458/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Shifeng & Wang, Sicong, 2015. "Impacts of wind energy on environment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 437-443.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nadia Maria Salgado-Herrera & David Campos-Gaona & Olimpo Anaya-Lara & Miguel Robles & Osvaldo Rodríguez-Hernández & Juan Ramón Rodríguez-Rodríguez, 2019. "THD Reduction in Distributed Renewables Energy Access through Wind Energy Conversion System Integration under Wind Speed Conditions in Tamaulipas, Mexico," Energies, MDPI, vol. 12(18), pages 1-19, September.
    2. Muhammad Luqman & Gang Yao & Lidan Zhou & Tao Zhang & Anil Lamichhane, 2019. "A Novel Hybrid Converter Proposed for Multi-MW Wind Generator for Offshore Applications," Energies, MDPI, vol. 12(21), pages 1-16, November.
    3. Suparak Srita & Sakda Somkun & Tanakorn Kaewchum & Wattanapong Rakwichian & Peter Zacharias & Uthen Kamnarn & Jutturit Thongpron & Damrong Amorndechaphon & Matheepot Phattanasak, 2022. "Modeling, Simulation and Development of Grid-Connected Voltage Source Converter with Selective Harmonic Mitigation: HiL and Experimental Validations," Energies, MDPI, vol. 15(7), pages 1-28, March.
    4. Miranda, Rodolfo Farías & Salgado-Herrera, Nadia Maria & Rodríguez-Hernández, Osvaldo & Rodríguez-Rodríguez, Juan Ramon & Robles, Miguel & Ruiz-Robles, Dante & Venegas-Rebollar, Vicente, 2022. "Distributed generation in low-voltage DC systems by wind energy in the Baja California Peninsula, Mexico," Energy, Elsevier, vol. 242(C).
    5. Sergio Toledo & Edgar Maqueda & Marco Rivera & Raúl Gregor & Pat Wheeler & Carlos Romero, 2020. "Improved Predictive Control in Multi-Modular Matrix Converter for Six-Phase Generation Systems," Energies, MDPI, vol. 13(10), pages 1-13, May.
    6. Teuvo Suntio & Tuomas Messo, 2019. "Power Electronics in Renewable Energy Systems," Energies, MDPI, vol. 12(10), pages 1-5, May.
    7. Amirreza Naderipour & Zulkurnain Abdul-Malek & Mohammad Reza Miveh & Mohammad Jafar Hadidian Moghaddam & Akhtar Kalam & Foad. H. Gandoman, 2018. "A Harmonic Compensation Strategy in a Grid-Connected Photovoltaic System Using Zero-Sequence Control," Energies, MDPI, vol. 11(10), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Urszula Ala-Karvia & Marta Hozer-Koćmiel, 2021. "Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019," Energies, MDPI, vol. 14(19), pages 1-27, October.
    2. Wang, Shifeng & Wang, Sicong & Smith, Pete, 2015. "Quantifying impacts of onshore wind farms on ecosystem services at local and global scales," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1424-1428.
    3. Igliński, Bartłomiej & Iglińska, Anna & Koziński, Grzegorz & Skrzatek, Mateusz & Buczkowski, Roman, 2016. "Wind energy in Poland – History, current state, surveys, Renewable Energy Sources Act, SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 19-33.
    4. Xinkai Li & Ke Yang & Hao Hu & Xiaodong Wang & Shun Kang, 2019. "Effect of Tailing-Edge Thickness on Aerodynamic Noise for Wind Turbine Airfoil," Energies, MDPI, vol. 12(2), pages 1-25, January.
    5. Salak, B. & Lindberg, K. & Kienast, F. & Hunziker, M., 2021. "How landscape-technology fit affects public evaluations of renewable energy infrastructure scenarios. A hybrid choice model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    6. REGUEIRO FERREIRA, Rosa María, 2019. "Responsabilidad Ambiental, Canón Eólico Y Gobernanza Local. El Caso De Galicia," Regional and Sectoral Economic Studies, Euro-American Association of Economic Development, vol. 19(1), pages 145-154.
    7. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    8. Wehrle, Sebastian & Gruber, Katharina & Schmidt, Johannes, 2021. "The cost of undisturbed landscapes," Energy Policy, Elsevier, vol. 159(C).
    9. Besseau, Romain & Sacchi, Romain & Blanc, Isabelle & Pérez-López, Paula, 2019. "Past, present and future environmental footprint of the Danish wind turbine fleet with LCA_WIND_DK, an online interactive platform," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 274-288.
    10. Grubert, E. & Zacarias, M., 2022. "Paradigm shifts for environmental assessment of decarbonizing energy systems: Emerging dominance of embodied impacts and design-oriented decision support needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    11. Köktürk, G. & Tokuç, A., 2017. "Vision for wind energy with a smart grid in Izmir," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 332-345.
    12. Skenteris, Konstantinos & Mirasgedis, Sevastianos & Tourkolias, Christos, 2019. "Implementing hedonic pricing models for valuing the visual impact of wind farms in Greece," Economic Analysis and Policy, Elsevier, vol. 64(C), pages 248-258.
    13. Martinez, Nain & Komendantova, Nadejda, 2020. "The effectiveness of the social impact assessment (SIA) in energy transition management: Stakeholders' insights from renewable energy projects in Mexico," Energy Policy, Elsevier, vol. 145(C).
    14. Damián Copena & David Pérez-Neira & Xavier Simón, 2019. "Local Economic Impact of Wind Energy Development: Analysis of the Regulatory Framework, Taxation, and Income for Galician Municipalities," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    15. Tajeddin, Alireza & Fazelpour, Farivar, 2016. "Towards realistic design of wind dams: An innovative approach to enhance wind potential," Applied Energy, Elsevier, vol. 182(C), pages 282-298.
    16. Cohen, Adi & Fischhendler, Itay & Katz, David, 2023. "Institutional acceptance of wildlife mitigation technologies for wind energy: The case of Israel," Energy Policy, Elsevier, vol. 173(C).
    17. Watts, David & Oses, Nicolás & Pérez, Rodrigo, 2016. "Assessment of wind energy potential in Chile: A project-based regional wind supply function approach," Renewable Energy, Elsevier, vol. 96(PA), pages 738-755.
    18. Manuel Gardt & Tom Broekel & Philipp Gareis, 2021. "Blowing against the winds of change? The relationship between anti-wind initiatives and wind turbines in Germany," Papers in Evolutionary Economic Geography (PEEG) 2119, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Jun 2021.
    19. Robert Kasner & Weronika Kruszelnicka & Patrycja Bałdowska-Witos & Józef Flizikowski & Andrzej Tomporowski, 2020. "Sustainable Wind Power Plant Modernization," Energies, MDPI, vol. 13(6), pages 1-23, March.
    20. Eichhorn, Marcus & Masurowski, Frank & Becker, Raik & Thrän, Daniela, 2019. "Wind energy expansion scenarios – A spatial sustainability assessment," Energy, Elsevier, vol. 180(C), pages 367-375.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2458-:d:170181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.