IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i9p2432-d169711.html
   My bibliography  Save this article

Life Cycle Assessment of a Buoy-Rope-Drum Wave Energy Converter

Author

Listed:
  • Qiang Zhai

    (Department of Mechanical Engineering, Shandong University at Weihai, Weihai 264209, China)

  • Linsen Zhu

    (Department of Mechanical Engineering, Shandong University at Weihai, Weihai 264209, China)

  • Shizhou Lu

    (Department of Mechanical Engineering, Shandong University at Weihai, Weihai 264209, China)

Abstract

This study presents a life cycle assessment (LCA) study for a buoy-rope-drum (BRD) wave energy converter (WEC), so as to understand the environmental performance of the BRD WEC by eco-labeling its life cycle stages and processes. The BRD WEC was developed by a research group at Shandong University (Weihai). The WEC consists of three main functional modules including buoy, generator and mooring modules. The designed rated power capacity is 10 kW. The LCA modeling is based on data collected from actual design, prototype manufacturing, installation and onsite sea test. Life cycle inventory (LCI) analysis and life cycle impact analysis (LCIA) were conducted. The analyses show that the most significant environmental impact contributor is identified to be the manufacturing stage of the BRD WEC due to consumption of energy and materials. Potential improvement approaches are proposed in the discussion. The LCI and LCIA assessment results are then benchmarked with results from reported LCA studies of other WECs, tidal energy converters, as well as offshore wind and solar PV systems. This study presents the energy and carbon intensities and paybacks with 387 kJ/kWh, 89 gCO 2 /kWh, 26 months and 23 months respectively. The results show that the energy and carbon intensities of the BRD WEC are slightly larger than, however comparable, in comparison with the referenced WECs, tidal, offshore wind and solar PV systems. A sensitivity analysis was carried out by varying the capacity factor from 20–50%. The energy and carbon intensities could reach as much as 968 kJ/kWh and 222 gCO 2 /kWh respectively while the capacity factor decreasing to 20%. Limitations for this study and scope of future work are discussed in the conclusion.

Suggested Citation

  • Qiang Zhai & Linsen Zhu & Shizhou Lu, 2018. "Life Cycle Assessment of a Buoy-Rope-Drum Wave Energy Converter," Energies, MDPI, vol. 11(9), pages 1-15, September.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2432-:d:169711
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/9/2432/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/9/2432/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pasquale Marcello Falcone & Enrica Imbert, 2018. "Social Life Cycle Approach as a Tool for Promoting the Market Uptake of Bio-Based Products from a Consumer Perspective," Sustainability, MDPI, vol. 10(4), pages 1-22, March.
    2. Zhang, Dahai & Li, Wei & Lin, Yonggang, 2009. "Wave energy in China: Current status and perspectives," Renewable Energy, Elsevier, vol. 34(10), pages 2089-2092.
    3. Alexander E. MacDonald & Christopher T. M. Clack & Anneliese Alexander & Adam Dunbar & James Wilczak & Yuanfu Xie, 2016. "Future cost-competitive electricity systems and their impact on US CO2 emissions," Nature Climate Change, Nature, vol. 6(5), pages 526-531, May.
    4. Amponsah, Nana Yaw & Troldborg, Mads & Kington, Bethany & Aalders, Inge & Hough, Rupert Lloyd, 2014. "Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 461-475.
    5. Weinzettel, Jan & Reenaas, Marte & Solli, Christian & Hertwich, Edgar G., 2009. "Life cycle assessment of a floating offshore wind turbine," Renewable Energy, Elsevier, vol. 34(3), pages 742-747.
    6. Thomas Schaubroeck & Benedetto Rugani, 2017. "A Revision of What Life Cycle Sustainability Assessment Should Entail: Towards Modeling the Net Impact on Human Well†Being," Journal of Industrial Ecology, Yale University, vol. 21(6), pages 1464-1477, December.
    7. Sheng, Songwei & Wang, Kunlin & Lin, Hongjun & Zhang, Yaqun & You, Yage & Wang, Zhenpeng & Chen, Aiju & Jiang, Jiaqiang & Wang, Wensheng & Ye, Yin, 2017. "Model research and open sea tests of 100 kW wave energy convertor Sharp Eagle Wanshan," Renewable Energy, Elsevier, vol. 113(C), pages 587-595.
    8. Liu, Yijin & Li, Ye & He, Fenglan & Wang, Haifeng, 2017. "Comparison study of tidal stream and wave energy technology development between China and some Western Countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 701-716.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roger Samsó & Júlia Crespin & Antonio García-Olivares & Jordi Solé, 2023. "Examining the Potential of Marine Renewable Energy: A Net Energy Perspective," Sustainability, MDPI, vol. 15(10), pages 1-35, May.
    2. Wen-Hsien Tsai, 2019. "Modeling and Simulation of Carbon Emission-Related Issues," Energies, MDPI, vol. 12(13), pages 1-8, July.
    3. Pennock, Shona & Vanegas-Cantarero, María M. & Bloise-Thomaz, Tianna & Jeffrey, Henry & Dickson, Matthew J., 2022. "Life cycle assessment of a point-absorber wave energy array," Renewable Energy, Elsevier, vol. 190(C), pages 1078-1088.
    4. Xizhuo Zhang & Longfei Zhang & Yujun Yuan & Qiang Zhai, 2020. "Life Cycle Assessment on Wave and Tidal Energy Systems: A Review of Current Methodological Practice," IJERPH, MDPI, vol. 17(5), pages 1-13, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiu, Shouqiang & Liu, Kun & Wang, Dongjiao & Ye, Jiawei & Liang, Fulin, 2019. "A comprehensive review of ocean wave energy research and development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    2. Yang, Can & Xu, Tingting & Wan, Chang & Liu, Hengxu & Su, Zuohang & Zhao, Lujun & Chen, Hailong & Johanning, Lars, 2023. "Numerical investigation of a dual cylindrical OWC hybrid system incorporated into a fixed caisson breakwater," Energy, Elsevier, vol. 263(PE).
    3. Kamranzad, Bahareh & Lin, Pengzhi & Iglesias, Gregorio, 2021. "Combining methodologies on the impact of inter and intra-annual variation of wave energy on selection of suitable location and technology," Renewable Energy, Elsevier, vol. 172(C), pages 697-713.
    4. Riccardo Basosi & Roberto Bonciani & Dario Frosali & Giampaolo Manfrida & Maria Laura Parisi & Franco Sansone, 2020. "Life Cycle Analysis of a Geothermal Power Plant: Comparison of the Environmental Performance with Other Renewable Energy Systems," Sustainability, MDPI, vol. 12(7), pages 1-29, April.
    5. Li, Ming & Luo, Haojie & Zhou, Shijie & Senthil Kumar, Gokula Manikandan & Guo, Xinman & Law, Tin Chung & Cao, Sunliang, 2022. "State-of-the-art review of the flexibility and feasibility of emerging offshore and coastal ocean energy technologies in East and Southeast Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    6. João Pires Gaspar & Pedro Dinis Gaspar & Pedro Dinho da Silva & Maria Paula Simões & Christophe Espírito Santo, 2018. "Energy Life-Cycle Assessment of Fruit Products—Case Study of Beira Interior’s Peach (Portugal)," Sustainability, MDPI, vol. 10(10), pages 1-12, October.
    7. Xu, Sheng & Wang, Shan & Guedes Soares, C., 2019. "Review of mooring design for floating wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 595-621.
    8. Ning, De-zhi & Wang, Rong-quan & Chen, Li-fen & Sun, Ke, 2019. "Experimental investigation of a land-based dual-chamber OWC wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 48-60.
    9. Liu, Hua & Wang, Weijun & Wen, Yadong & Mao, Longbo & Wang, Wenqiang & Mi, Hongju, 2019. "A novel axial flow self-rectifying turbine for use in wave energy converters," Energy, Elsevier, vol. 189(C).
    10. Summerfield-Ryan, Oliver & Park, Susan, 2023. "The power of wind: The global wind energy industry's successes and failures," Ecological Economics, Elsevier, vol. 210(C).
    11. Kushal A. Prasad & Aneesh A. Chand & Nallapaneni Manoj Kumar & Sumesh Narayan & Kabir A. Mamun, 2022. "A Critical Review of Power Take-Off Wave Energy Technology Leading to the Conceptual Design of a Novel Wave-Plus-Photon Energy Harvester for Island/Coastal Communities’ Energy Needs," Sustainability, MDPI, vol. 14(4), pages 1-55, February.
    12. de Chalendar, Jacques A. & Benson, Sally M., 2021. "A physics-informed data reconciliation framework for real-time electricity and emissions tracking," Applied Energy, Elsevier, vol. 304(C).
    13. Anni Orola & Anna Härri & Jarkko Levänen & Ville Uusitalo & Stig Irving Olsen, 2022. "Assessing WELBY Social Life Cycle Assessment Approach through Cobalt Mining Case Study," Sustainability, MDPI, vol. 14(18), pages 1-26, September.
    14. Yang, Yuting, 2022. "Electricity interconnection with intermittent renewables," Journal of Environmental Economics and Management, Elsevier, vol. 113(C).
    15. Jose Luis Osorio-Tejada & Eva Llera-Sastresa & Sabina Scarpellini & Tito Morales-Pinzón, 2022. "Social Organizational Life Cycle Assessment of Transport Services: Case Studies in Colombia, Spain, and Malaysia," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
    16. Rashedi, A. & Sridhar, I. & Tseng, K.J., 2013. "Life cycle assessment of 50MW wind firms and strategies for impact reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 89-101.
    17. Tian, Xueyu & You, Fengqi, 2019. "Carbon-neutral hybrid energy systems with deep water source cooling, biomass heating, and geothermal heat and power," Applied Energy, Elsevier, vol. 250(C), pages 413-432.
    18. Datu Buyung Agusdinata & Wenjuan Liu & Sinta Sulistyo & Philippe LeBillon & Je'anne Wegner, 2023. "Evaluating sustainability impacts of critical mineral extractions: Integration of life cycle sustainability assessment and SDGs frameworks," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 746-759, June.
    19. Jenkins, J.D. & Zhou, Z. & Ponciroli, R. & Vilim, R.B. & Ganda, F. & de Sisternes, F. & Botterud, A., 2018. "The benefits of nuclear flexibility in power system operations with renewable energy," Applied Energy, Elsevier, vol. 222(C), pages 872-884.
    20. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2432-:d:169711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.