IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7108-d927129.html
   My bibliography  Save this article

Computational Fluid Dynamics and Experimental Analysis of a Wind Turbine Blade’s Frontal Section with and without Arrays of Dimpled Structures

Author

Listed:
  • Shahid Aziz

    (Department of Mechanical Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-Si 63243, Korea
    These authors equally contributed to this work.)

  • Abdullah Khan

    (Department of Mechanical Engineering, National University of Technology, Islamabad 44000, Pakistan
    These authors equally contributed to this work.)

  • Imran Shah

    (Department of Aerospace Engineering, College of Aeronautical Engineering, National University of Sciences and Technology, Risalpur 24090, Pakistan)

  • Tariq Amin Khan

    (Department of Aerospace Engineering, College of Aeronautical Engineering, National University of Sciences and Technology, Risalpur 24090, Pakistan)

  • Yasir Ali

    (Department of Aerospace Engineering, College of Aeronautical Engineering, National University of Sciences and Technology, Risalpur 24090, Pakistan)

  • Muhammad Umer Sohail

    (Department of Aeronautics and Astronautics Engineering, Institute of Space Technology, Islamabad 44000, Pakistan)

  • Badar Rashid

    (Department of Mechanical Engineering, National University of Technology, Islamabad 44000, Pakistan)

  • Dong Won Jung

    (Department of Mechanical Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-Si 63243, Korea)

Abstract

Horizontal axis wind turbines are used for energy generation at domestic as well as industrial levels. In the wind turbines, a reduction in drag force and an increase in lift force are desired to increase the energy efficiency. In this research work, computational fluid dynamics (CFD) analysis has been performed on a turbine blade’s frontal section with an NACA S814 profile. The drag force has been reduced by introducing an array of dimpled structures at the blade surface. The dimpled structures generate a turbulent boundary layer flow on its surface that reduces the drag force and modifies the lift force because it has greater momentum than the laminar flow. The simulation results are verified by the experimental results performed in a wind tunnel and are in close harmony with the simulated results. For accurate results, CFD is performed on the blade’s frontal section at the angle of attack (AOA) with a domain of 0° to 80° and at multiple Reynolds numbers. The local attributes, lift force, drag force and pressure coefficient are numerically computed by using the three models on Ansys fluent: the Spalart-Allmaras, the k-epsilon (RNG) and the k-omega shear stress transport (SST).

Suggested Citation

  • Shahid Aziz & Abdullah Khan & Imran Shah & Tariq Amin Khan & Yasir Ali & Muhammad Umer Sohail & Badar Rashid & Dong Won Jung, 2022. "Computational Fluid Dynamics and Experimental Analysis of a Wind Turbine Blade’s Frontal Section with and without Arrays of Dimpled Structures," Energies, MDPI, vol. 15(19), pages 1-15, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7108-:d:927129
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7108/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7108/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter J. Schubel & Richard J. Crossley, 2012. "Wind Turbine Blade Design," Energies, MDPI, vol. 5(9), pages 1-25, September.
    2. Shafiqur Rehman & Md. Mahbub Alam & Luai M. Alhems & M. Mujahid Rafique, 2018. "Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement—A Review," Energies, MDPI, vol. 11(3), pages 1-34, February.
    3. Ismail, Md Farhad & Vijayaraghavan, Krishna, 2015. "The effects of aerofoil profile modification on a vertical axis wind turbine performance," Energy, Elsevier, vol. 80(C), pages 20-31.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdullah Khan & Imran Shah & Waheed Gul & Tariq Amin Khan & Yasir Ali & Syed Athar Masood, 2023. "Numerical and Experimental Analysis of Shell and Tube Heat Exchanger with Round and Hexagonal Tubes," Energies, MDPI, vol. 16(2), pages 1-14, January.
    2. Alina Fazylova & Baurzhan Tultayev & Teodor Iliev & Ivaylo Stoyanov & Ivan Beloev, 2023. "Development of a Control Unit for the Angle of Attack of a Vertically Axial Wind Turbine," Energies, MDPI, vol. 16(13), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sutrisno & Sigit Iswahyudi & Setyawan Bekti Wibowo, 2018. "Dimensional Analysis of Power Prediction of a Real-Scale Wind Turbine Based on Wind-Tunnel Torque Measurement of Small-Scaled Models," Energies, MDPI, vol. 11(9), pages 1-13, September.
    2. Alfredo Alcayde & Quetzalcoatl Hernandez-Escobedo & David Muñoz-Rodríguez & Alberto-Jesus Perea-Moreno, 2022. "Worldwide Research Trends on Optimizing Wind Turbine Efficiency," Energies, MDPI, vol. 15(18), pages 1-7, September.
    3. Elena Sosnina & Andrey Dar’enkov & Andrey Kurkin & Ivan Lipuzhin & Andrey Mamonov, 2022. "Review of Efficiency Improvement Technologies of Wind Diesel Hybrid Systems for Decreasing Fuel Consumption," Energies, MDPI, vol. 16(1), pages 1-38, December.
    4. Wekesa, David Wafula & Wang, Cong & Wei, Yingjie & Danao, Louis Angelo M., 2017. "Analytical and numerical investigation of unsteady wind for enhanced energy capture in a fluctuating free-stream," Energy, Elsevier, vol. 121(C), pages 854-864.
    5. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    6. S. Arunvinthan & V.S. Raatan & S. Nadaraja Pillai & Amjad A. Pasha & M. M. Rahman & Khalid A. Juhany, 2021. "Aerodynamic Characteristics of Shark Scale-Based Vortex Generators upon Symmetrical Airfoil," Energies, MDPI, vol. 14(7), pages 1-22, March.
    7. Michał Pacholczyk & Dariusz Karkosiński, 2020. "Parametric Study on a Performance of a Small Counter-Rotating Wind Turbine," Energies, MDPI, vol. 13(15), pages 1-17, July.
    8. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Murata, Junsuke & Furukawa, Kazuma & Yamamoto, Masayuki, 2016. "The influence of flow field and aerodynamic forces on a straight-bladed vertical axis wind turbine," Energy, Elsevier, vol. 111(C), pages 260-271.
    9. Jinghua Lin & You-Lin Xu & Yong Xia & Chao Li, 2019. "Structural Analysis of Large-Scale Vertical-Axis Wind Turbines, Part I: Wind Load Simulation," Energies, MDPI, vol. 12(13), pages 1-31, July.
    10. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Murata, Junsuke & Furukawa, Kazuma & Yamamoto, Masayuki, 2015. "Effect of number of blades on aerodynamic forces on a straight-bladed Vertical Axis Wind Turbine," Energy, Elsevier, vol. 90(P1), pages 784-795.
    11. Unai Elosegui & Igor Egana & Alain Ulazia & Gabriel Ibarra-Berastegi, 2018. "Pitch Angle Misalignment Correction Based on Benchmarking and Laser Scanner Measurement in Wind Farms," Energies, MDPI, vol. 11(12), pages 1-20, December.
    12. Liu, Qingsong & Miao, Weipao & Ye, Qi & Li, Chun, 2022. "Performance assessment of an innovative Gurney flap for straight-bladed vertical axis wind turbine," Renewable Energy, Elsevier, vol. 185(C), pages 1124-1138.
    13. Elgammi, Moutaz & Sant, Tonio & Alshaikh, Moftah, 2020. "Predicting the stochastic aerodynamic loads on blades of two yawed downwind hawts in uncontrolled conditions using a bem algorithm," Renewable Energy, Elsevier, vol. 146(C), pages 371-383.
    14. Shukla, Vivek & Kaviti, Ajay Kumar, 2017. "Performance evaluation of profile modifications on straight-bladed vertical axis wind turbine by energy and Spalart Allmaras models," Energy, Elsevier, vol. 126(C), pages 766-795.
    15. Bhavsar, Het & Roy, Sukanta & Niyas, Hakeem, 2023. "Aerodynamic performance enhancement of the DU99W405 airfoil for horizontal axis wind turbines using slotted airfoil configuration," Energy, Elsevier, vol. 263(PA).
    16. Liu, Xiong & Lu, Cheng & Liang, Shi & Godbole, Ajit & Chen, Yan, 2017. "Vibration-induced aerodynamic loads on large horizontal axis wind turbine blades," Applied Energy, Elsevier, vol. 185(P2), pages 1109-1119.
    17. Wiroon Monatrakul & Kritsadang Senawong & Piyawat Sritram & Ratchaphon Suntivarakorn, 2023. "A Comparison Study of Hydro-Compact Generators with Horizontal Spiral Turbines (HSTs) and a Three-Blade Turbine Used in Irrigation Canals," Energies, MDPI, vol. 16(5), pages 1-15, February.
    18. Martín-San-Román, Raquel & Benito-Cia, Pablo & Azcona-Armendáriz, José & Cuerva-Tejero, Alvaro, 2021. "Validation of a free vortex filament wake module for the integrated simulation of multi-rotor wind turbines," Renewable Energy, Elsevier, vol. 179(C), pages 1706-1718.
    19. Han, Wanlong & Yan, Peigang & Han, Wanjin & He, Yurong, 2015. "Design of wind turbines with shroud and lobed ejectors for efficient utilization of low-grade wind energy," Energy, Elsevier, vol. 89(C), pages 687-701.
    20. Ke Song & Huiting Huan & Yuchi Kang, 2022. "Aerodynamic Performance and Wake Characteristics Analysis of Archimedes Spiral Wind Turbine Rotors with Different Blade Angle," Energies, MDPI, vol. 16(1), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7108-:d:927129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.