IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i9p2365-d168475.html
   My bibliography  Save this article

Economic Optimal Implementation of Virtual Power Plants in the German Power Market

Author

Listed:
  • Dodiek Ika Candra

    (Department of Waste & Resource Management, Faculty of Agricultural and Environmental Science, University of Rostock, 18059 Rostock, Germany)

  • Kilian Hartmann

    (Department of Engineering Science, Faculty of Engineering, Aschaffenburg University of Applied Sciences, 63743 Aschaffenburg, Germany)

  • Michael Nelles

    (Department of Waste & Resource Management, Faculty of Agricultural and Environmental Science, University of Rostock, 18059 Rostock, Germany
    Deutsches Biomasseforschunsgzentrum gGmbH (DBFZ), the Centre for Biomass Research in Germany, 04347 Leipzig, Germany)

Abstract

The burden of excess energy from the high renewable energy sources (RES) share creates a significant reduction of residual load for the future, resulting in reduced market prices. The higher the share of stochastic RES, the more often the price will be 0 €/MWh. The power market needs new methods to solve these problems. The development of virtual power plants (VPPs) is aimed at solving techno-economic problems with an increasing share of RES in the power market. This study analyses a possible implementation of stochastic and deterministic RES in a VPP to generate secured power, which can be implemented in the European Power Exchange (EPEX)/European Energy Exchange (EEX) power market using existing market products. In this study, the optimal economic VPP configuration for an RES-based power plant is investigated and implemented into standard power market products. The results show that the optimal economic VPP configuration for different market products varies, depending on the energy availability and the marginal costs of the VPP components. The size of the VPP components is positively correlated to the components’ share of the energy generated. It was also found that projecting or implementing VPPs in Germany at current market prices (EPEX/EEX prices) is not yet economically feasible for a small share of market products. However, the secured power can be marketed on the SPOT and in the futures market with higher and more stable prices compared with the status quo.

Suggested Citation

  • Dodiek Ika Candra & Kilian Hartmann & Michael Nelles, 2018. "Economic Optimal Implementation of Virtual Power Plants in the German Power Market," Energies, MDPI, vol. 11(9), pages 1-24, September.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2365-:d:168475
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/9/2365/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/9/2365/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zamani, Ali Ghahgharaee & Zakariazadeh, Alireza & Jadid, Shahram, 2016. "Day-ahead resource scheduling of a renewable energy based virtual power plant," Applied Energy, Elsevier, vol. 169(C), pages 324-340.
    2. Michael G. Pollitt and Karim L. Anaya, 2016. "Can current electricity markets cope with high shares of renewables? A comparison of approaches in Germany, the UK and the State of New York," The Energy Journal, International Association for Energy Economics, vol. 0(Bollino-M).
    3. Garcia, Humberto E. & Mohanty, Amit & Lin, Wen-Chiao & Cherry, Robert S., 2013. "Dynamic analysis of hybrid energy systems under flexible operation and variable renewable generation – Part II: Dynamic cost analysis," Energy, Elsevier, vol. 52(C), pages 17-26.
    4. Loßner, Martin & Böttger, Diana & Bruckner, Thomas, 2017. "Economic assessment of virtual power plants in the German energy market — A scenario-based and model-supported analysis," Energy Economics, Elsevier, vol. 62(C), pages 125-138.
    5. Garcia, Humberto E. & Mohanty, Amit & Lin, Wen-Chiao & Cherry, Robert S., 2013. "Dynamic analysis of hybrid energy systems under flexible operation and variable renewable generation – Part I: Dynamic performance analysis," Energy, Elsevier, vol. 52(C), pages 1-16.
    6. Pandžić, Hrvoje & Morales, Juan M. & Conejo, Antonio J. & Kuzle, Igor, 2013. "Offering model for a virtual power plant based on stochastic programming," Applied Energy, Elsevier, vol. 105(C), pages 282-292.
    7. Heide, Dominik & Greiner, Martin & von Bremen, Lüder & Hoffmann, Clemens, 2011. "Reduced storage and balancing needs in a fully renewable European power system with excess wind and solar power generation," Renewable Energy, Elsevier, vol. 36(9), pages 2515-2523.
    8. Wassermann, Sandra & Reeg, Matthias & Nienhaus, Kristina, 2015. "Current challenges of Germany’s energy transition project and competing strategies of challengers and incumbents: The case of direct marketing of electricity from renewable energy sources," Energy Policy, Elsevier, vol. 76(C), pages 66-75.
    9. Arslan, Okan & Karasan, Oya Ekin, 2013. "Cost and emission impacts of virtual power plant formation in plug-in hybrid electric vehicle penetrated networks," Energy, Elsevier, vol. 60(C), pages 116-124.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amit Kumer Podder & Sayemul Islam & Nallapaneni Manoj Kumar & Aneesh A. Chand & Pulivarthi Nageswara Rao & Kushal A. Prasad & T. Logeswaran & Kabir A. Mamun, 2020. "Systematic Categorization of Optimization Strategies for Virtual Power Plants," Energies, MDPI, vol. 13(23), pages 1-46, November.
    2. Natalia Naval & Jose M. Yusta, 2020. "Water-Energy Management for Demand Charges and Energy Cost Optimization of a Pumping Stations System under a Renewable Virtual Power Plant Model," Energies, MDPI, vol. 13(11), pages 1-21, June.
    3. Sampath Kumar Venkatachary & Jagdish Prasad & Ravi Samikannu & Annamalai Alagappan & Leo John Baptist & Raymon Antony Raj, 2020. "Macro Economics of Virtual Power Plant for Rural Areas of Botswana," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 196-207.
    4. Michał Jasiński & Tomasz Sikorski & Dominika Kaczorowska & Jacek Rezmer & Vishnu Suresh & Zbigniew Leonowicz & Paweł Kostyła & Jarosław Szymańda & Przemysław Janik & Jacek Bieńkowski & Przemysław Prus, 2021. "A Case Study on Data Mining Application in a Virtual Power Plant: Cluster Analysis of Power Quality Measurements," Energies, MDPI, vol. 14(4), pages 1-14, February.
    5. Michal Jasiński & Tomasz Sikorski & Dominika Kaczorowska & Jacek Rezmer & Vishnu Suresh & Zbigniew Leonowicz & Paweł Kostyla & Jarosław Szymańda & Przemysław Janik, 2020. "A Case Study on Power Quality in a Virtual Power Plant: Long Term Assessment and Global Index Application," Energies, MDPI, vol. 13(24), pages 1-20, December.
    6. Bianca Goia & Tudor Cioara & Ionut Anghel, 2022. "Virtual Power Plant Optimization in Smart Grids: A Narrative Review," Future Internet, MDPI, vol. 14(5), pages 1-22, April.
    7. Albana ILO, 2019. "Design of the Smart Grid Architecture According to Fractal Principles and the Basics of Corresponding Market Structure," Energies, MDPI, vol. 12(21), pages 1-24, October.
    8. Tomasz Sikorski & Michał Jasiński & Edyta Ropuszyńska-Surma & Magdalena Węglarz & Dominika Kaczorowska & Paweł Kostyła & Zbigniew Leonowicz & Robert Lis & Jacek Rezmer & Wilhelm Rojewski & Marian Sobi, 2019. "A Case Study on Distributed Energy Resources and Energy-Storage Systems in a Virtual Power Plant Concept: Economic Aspects," Energies, MDPI, vol. 12(23), pages 1-21, November.
    9. Wafa Nafkha-Tayari & Seifeddine Ben Elghali & Ehsan Heydarian-Forushani & Mohamed Benbouzid, 2022. "Virtual Power Plants Optimization Issue: A Comprehensive Review on Methods, Solutions, and Prospects," Energies, MDPI, vol. 15(10), pages 1-20, May.
    10. Naval, Natalia & Yusta, Jose M., 2021. "Virtual power plant models and electricity markets - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sampath Kumar Venkatachary & Jagdish Prasad & Ravi Samikannu & Annamalai Alagappan & Leo John Baptist & Raymon Antony Raj, 2020. "Macro Economics of Virtual Power Plant for Rural Areas of Botswana," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 196-207.
    2. Yu, Songyuan & Fang, Fang & Liu, Yajuan & Liu, Jizhen, 2019. "Uncertainties of virtual power plant: Problems and countermeasures," Applied Energy, Elsevier, vol. 239(C), pages 454-470.
    3. Amit Kumer Podder & Sayemul Islam & Nallapaneni Manoj Kumar & Aneesh A. Chand & Pulivarthi Nageswara Rao & Kushal A. Prasad & T. Logeswaran & Kabir A. Mamun, 2020. "Systematic Categorization of Optimization Strategies for Virtual Power Plants," Energies, MDPI, vol. 13(23), pages 1-46, November.
    4. Wang, Han & Riaz, Shariq & Mancarella, Pierluigi, 2020. "Integrated techno-economic modeling, flexibility analysis, and business case assessment of an urban virtual power plant with multi-market co-optimization," Applied Energy, Elsevier, vol. 259(C).
    5. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2017. "A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 341-363.
    6. Chung, Cheng-Ta & Hung, Yi-Hsuan, 2015. "Performance and energy management of a novel full hybrid electric powertrain system," Energy, Elsevier, vol. 89(C), pages 626-636.
    7. Hadayeghparast, Shahrzad & SoltaniNejad Farsangi, Alireza & Shayanfar, Heidarali, 2019. "Day-ahead stochastic multi-objective economic/emission operational scheduling of a large scale virtual power plant," Energy, Elsevier, vol. 172(C), pages 630-646.
    8. Mahmud, Khizir & Khan, Behram & Ravishankar, Jayashri & Ahmadi, Abdollah & Siano, Pierluigi, 2020. "An internet of energy framework with distributed energy resources, prosumers and small-scale virtual power plants: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    9. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    10. Chen, Jun & Garcia, Humberto E., 2016. "Economic optimization of operations for hybrid energy systems under variable markets," Applied Energy, Elsevier, vol. 177(C), pages 11-24.
    11. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2016. "Stochastic profit-based scheduling of industrial virtual power plant using the best demand response strategy," Applied Energy, Elsevier, vol. 164(C), pages 590-606.
    12. Guo, Xiaodan & Guo, Xiaopeng, 2015. "China's photovoltaic power development under policy incentives: A system dynamics analysis," Energy, Elsevier, vol. 93(P1), pages 589-598.
    13. Xiaopeng Guo & Xiaodan Guo & Jiahai Yuan, 2014. "Impact Analysis of Air Pollutant Emission Policies on Thermal Coal Supply Chain Enterprises in China," Sustainability, MDPI, vol. 7(1), pages 1-21, December.
    14. Xiaodan Guo & Dongxiao Niu & Bowen Xiao, 2016. "Assessment of Air-Pollution Control Policy’s Impact on China’s PV Power: A System Dynamics Analysis," Energies, MDPI, vol. 9(5), pages 1-23, May.
    15. Chen, Jun & Rabiti, Cristian, 2017. "Synthetic wind speed scenarios generation for probabilistic analysis of hybrid energy systems," Energy, Elsevier, vol. 120(C), pages 507-517.
    16. Caballero, F. & Sauma, E. & Yanine, F., 2013. "Business optimal design of a grid-connected hybrid PV (photovoltaic)-wind energy system without energy storage for an Easter Island's block," Energy, Elsevier, vol. 61(C), pages 248-261.
    17. Wei, Congying & Xu, Jian & Liao, Siyang & Sun, Yuanzhang & Jiang, Yibo & Ke, Deping & Zhang, Zhen & Wang, Jing, 2018. "A bi-level scheduling model for virtual power plants with aggregated thermostatically controlled loads and renewable energy," Applied Energy, Elsevier, vol. 224(C), pages 659-670.
    18. Epiney, A. & Rabiti, C. & Talbot, P. & Alfonsi, A., 2020. "Economic analysis of a nuclear hybrid energy system in a stochastic environment including wind turbines in an electricity grid," Applied Energy, Elsevier, vol. 260(C).
    19. Shabanzadeh, Morteza & Sheikh-El-Eslami, Mohammad-Kazem & Haghifam, Mahmoud-Reza, 2016. "A medium-term coalition-forming model of heterogeneous DERs for a commercial virtual power plant," Applied Energy, Elsevier, vol. 169(C), pages 663-681.
    20. Tajeddini, Mohammad Amin & Rahimi-Kian, Ashkan & Soroudi, Alireza, 2014. "Risk averse optimal operation of a virtual power plant using two stage stochastic programming," Energy, Elsevier, vol. 73(C), pages 958-967.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2365-:d:168475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.