IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v132y2019icp163-182.html
   My bibliography  Save this article

Minimizing the total completion time of an urban delivery problem with uncertain assembly time

Author

Listed:
  • Liu, Bingbing
  • Guo, Xiaolong
  • Yu, Yugang
  • Zhou, Qiang

Abstract

This paper studies a stochastic programming problem to minimize the total completion time consists of the travel time and the assembly time, for a new class of urban delivery problems. The problem is formulated into a chance-constrained programming problem and the probability distribution characteristics of the uncertainty of product assembly time are obtained using a statistical learning method. Then the original chance-constrained programming problem can be converted into an equivalent deterministic programming problem. Subsequently, an algorithm consisting of two sub-heuristics is proposed to solve the deterministic problem. Finally, comprehensive numerical experiments with real dataset show the superiority of the model and the algorithm.

Suggested Citation

  • Liu, Bingbing & Guo, Xiaolong & Yu, Yugang & Zhou, Qiang, 2019. "Minimizing the total completion time of an urban delivery problem with uncertain assembly time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 132(C), pages 163-182.
  • Handle: RePEc:eee:transe:v:132:y:2019:i:c:p:163-182
    DOI: 10.1016/j.tre.2019.11.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554519304521
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2019.11.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eiichi Taniguchi & Rob E.C.M. Van Der Heijden, 2000. "An evaluation methodology for city logistics," Transport Reviews, Taylor & Francis Journals, vol. 20(1), pages 65-90, January.
    2. Dumas, Yvan & Desrosiers, Jacques & Soumis, Francois, 1991. "The pickup and delivery problem with time windows," European Journal of Operational Research, Elsevier, vol. 54(1), pages 7-22, September.
    3. Ilgaz Sungur & Yingtao Ren & Fernando Ordóñez & Maged Dessouky & Hongsheng Zhong, 2010. "A Model and Algorithm for the Courier Delivery Problem with Uncertainty," Transportation Science, INFORMS, vol. 44(2), pages 193-205, May.
    4. Renaud Masson & Anna Trentini & Fabien Lehuédé & Nicolas Malhéné & Olivier Péton & Houda Tlahig, 2017. "Optimization of a city logistics transportation system with mixed passengers and goods," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 81-109, March.
    5. Hongtao Lei & Gilbert Laporte & Bo Guo, 2012. "A generalized variable neighborhood search heuristic for the capacitated vehicle routing problem with stochastic service times," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 99-118, April.
    6. Miguel A. Lejeune & François Margot, 2016. "Solving Chance-Constrained Optimization Problems with Stochastic Quadratic Inequalities," Operations Research, INFORMS, vol. 64(4), pages 939-957, August.
    7. Zhang, Yuankai & Sun, Lijun & Hu, Xiangpei & Zhao, Chen, 2019. "Order consolidation for the last-mile split delivery in online retailing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 309-327.
    8. Astrid S. Kenyon & David P. Morton, 2003. "Stochastic Vehicle Routing with Random Travel Times," Transportation Science, INFORMS, vol. 37(1), pages 69-82, February.
    9. Taş, D. & Gendreau, M. & Dellaert, N. & van Woensel, T. & de Kok, A.G., 2014. "Vehicle routing with soft time windows and stochastic travel times: A column generation and branch-and-price solution approach," European Journal of Operational Research, Elsevier, vol. 236(3), pages 789-799.
    10. Errico, F. & Desaulniers, G. & Gendreau, M. & Rei, W. & Rousseau, L.-M., 2016. "A priori optimization with recourse for the vehicle routing problem with hard time windows and stochastic service times," European Journal of Operational Research, Elsevier, vol. 249(1), pages 55-66.
    11. Diego Cattaruzza & Nabil Absi & Dominique Feillet & Jesús González-Feliu, 2017. "Vehicle routing problems for city logistics," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 51-79, March.
    12. Gilbert Laporte & François Louveaux & Hélène Mercure, 1992. "The Vehicle Routing Problem with Stochastic Travel Times," Transportation Science, INFORMS, vol. 26(3), pages 161-170, August.
    13. Ulrike Ritzinger & Jakob Puchinger & Richard F. Hartl, 2016. "A survey on dynamic and stochastic vehicle routing problems," International Journal of Production Research, Taylor & Francis Journals, vol. 54(1), pages 215-231, January.
    14. Langevin, André & Soumis, François, 1989. "Design of multiple-vehicle delivery tours satisfying time constraints," Transportation Research Part B: Methodological, Elsevier, vol. 23(2), pages 123-138, April.
    15. C Lee & K Lee & S Park, 2012. "Robust vehicle routing problem with deadlines and travel time/demand uncertainty," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(9), pages 1294-1306, September.
    16. G. Clarke & J. W. Wright, 1964. "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points," Operations Research, INFORMS, vol. 12(4), pages 568-581, August.
    17. Li, Xiangyong & Tian, Peng & Leung, Stephen C.H., 2010. "Vehicle routing problems with time windows and stochastic travel and service times: Models and algorithm," International Journal of Production Economics, Elsevier, vol. 125(1), pages 137-145, May.
    18. Nanry, William P. & Wesley Barnes, J., 2000. "Solving the pickup and delivery problem with time windows using reactive tabu search," Transportation Research Part B: Methodological, Elsevier, vol. 34(2), pages 107-121, February.
    19. Zhang, Jun & Liu, Feng & Tang, Jiafu & Li, Yanhui, 2019. "The online integrated order picking and delivery considering Pickers’ learning effects for an O2O community supermarket," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 180-199.
    20. Dayarian, Iman & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2016. "An adaptive large-neighborhood search heuristic for a multi-period vehicle routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 95-123.
    21. F. Errico & G. Desaulniers & M. Gendreau & W. Rei & L.-M. Rousseau, 2018. "The vehicle routing problem with hard time windows and stochastic service times," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 223-251, September.
    22. Li, Baoxiang & Krushinsky, Dmitry & Reijers, Hajo A. & Van Woensel, Tom, 2014. "The Share-a-Ride Problem: People and parcels sharing taxis," European Journal of Operational Research, Elsevier, vol. 238(1), pages 31-40.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ji, Chenlu & Mandania, Rupal & Liu, Jiyin & Liret, Anne, 2022. "Scheduling on-site service deliveries to minimise the risk of missing appointment times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    2. Kim, Nayeon & Montreuil, Benoit & Klibi, Walid & Kholgade, Nitish, 2021. "Hyperconnected urban fulfillment and delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2017. "The stochastic vehicle routing problem, a literature review, Part II: solution methods," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 349-388, December.
    2. F. Errico & G. Desaulniers & M. Gendreau & W. Rei & L.-M. Rousseau, 2018. "The vehicle routing problem with hard time windows and stochastic service times," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 223-251, September.
    3. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2018. "The stochastic vehicle routing problem, a literature review, part I: models," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 193-221, September.
    4. Hossein Hashemi Doulabi & Gilles Pesant & Louis-Martin Rousseau, 2020. "Vehicle Routing Problems with Synchronized Visits and Stochastic Travel and Service Times: Applications in Healthcare," Transportation Science, INFORMS, vol. 54(4), pages 1053-1072, July.
    5. Errico, F. & Desaulniers, G. & Gendreau, M. & Rei, W. & Rousseau, L.-M., 2016. "A priori optimization with recourse for the vehicle routing problem with hard time windows and stochastic service times," European Journal of Operational Research, Elsevier, vol. 249(1), pages 55-66.
    6. Ji, Chenlu & Mandania, Rupal & Liu, Jiyin & Liret, Anne, 2022. "Scheduling on-site service deliveries to minimise the risk of missing appointment times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    7. Azcuy, Irecis & Agatz, Niels & Giesen, Ricardo, 2021. "Designing integrated urban delivery systems using public transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    8. Zhaoxia Guo & Stein W. Wallace & Michal Kaut, 2019. "Vehicle Routing with Space- and Time-Correlated Stochastic Travel Times: Evaluating the Objective Function," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 654-670, October.
    9. Avraham, Edison & Raviv, Tal, 2020. "The data-driven time-dependent traveling salesperson problem," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 25-40.
    10. Borzou Rostami & Guy Desaulniers & Fausto Errico & Andrea Lodi, 2021. "Branch-Price-and-Cut Algorithms for the Vehicle Routing Problem with Stochastic and Correlated Travel Times," Operations Research, INFORMS, vol. 69(2), pages 436-455, March.
    11. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    12. Yossiri Adulyasak & Patrick Jaillet, 2016. "Models and Algorithms for Stochastic and Robust Vehicle Routing with Deadlines," Transportation Science, INFORMS, vol. 50(2), pages 608-626, May.
    13. Ehmke, Jan Fabian & Campbell, Ann Melissa & Urban, Timothy L., 2015. "Ensuring service levels in routing problems with time windows and stochastic travel times," European Journal of Operational Research, Elsevier, vol. 240(2), pages 539-550.
    14. Guodong Yu & Yu Yang, 2019. "Dynamic routing with real-time traffic information," Operational Research, Springer, vol. 19(4), pages 1033-1058, December.
    15. Mohammed Bazirha & Abdeslam Kadrani & Rachid Benmansour, 2023. "Stochastic home health care routing and scheduling problem with multiple synchronized services," Annals of Operations Research, Springer, vol. 320(2), pages 573-601, January.
    16. Biao Yuan & Ran Liu & Zhibin Jiang, 2015. "A branch-and-price algorithm for the home health care scheduling and routing problem with stochastic service times and skill requirements," International Journal of Production Research, Taylor & Francis Journals, vol. 53(24), pages 7450-7464, December.
    17. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    18. Mojtaba Rajabi-Bahaabadi & Afshin Shariat-Mohaymany & Mohsen Babaei & Daniele Vigo, 2021. "Reliable vehicle routing problem in stochastic networks with correlated travel times," Operational Research, Springer, vol. 21(1), pages 299-330, March.
    19. Norlund, Ellen Karoline & Gribkovskaia, Irina & Laporte, Gilbert, 2015. "Supply vessel planning under cost, environment and robustness considerations," Omega, Elsevier, vol. 57(PB), pages 271-281.
    20. Hongtao Lei & Gilbert Laporte & Bo Guo, 2012. "A generalized variable neighborhood search heuristic for the capacitated vehicle routing problem with stochastic service times," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 99-118, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:132:y:2019:i:c:p:163-182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.