IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i8p2012-d161540.html
   My bibliography  Save this article

Estimation of Load Pattern for Optimal Planning of Stand-Alone Microgrid Networks

Author

Listed:
  • Chang Koo Lee

    (Energy Technology Demonstration Division, Korea Institute of Energy Technology Evaluation and Planning, 114 Gil, 14 Teheran, Gangnam, Seoul 06175, Korea)

  • Byeong Gwan Bhang

    (Department of Electrical Engineering, Konkuk University, 120 Neungdong, Gwangjin, Seoul 05029, Korea)

  • David Kwangsoon Kim

    (Department of Electrical Engineering, Konkuk University, 120 Neungdong, Gwangjin, Seoul 05029, Korea)

  • Sang Hun Lee

    (Energy Technology Demonstration Division, Korea Institute of Energy Technology Evaluation and Planning, 114 Gil, 14 Teheran, Gangnam, Seoul 06175, Korea)

  • Hae Lim Cha

    (Department of Electrical Engineering, Konkuk University, 120 Neungdong, Gwangjin, Seoul 05029, Korea)

  • Hyung Keun Ahn

    (Department of Electrical Engineering, Konkuk University, 120 Neungdong, Gwangjin, Seoul 05029, Korea)

Abstract

This paper proposes a method for estimating the load pattern for optimal planning of stand-alone renewable microgrids and verifies when the basic data for microgrid design are limited. To estimate a proper load pattern for optimal microgrid design when the data obtained in advance are insufficient, the least squares method is used to compare the similarity of annual power consumption between the subject area and eight islands in Korea whose actual load patterns were previously obtained. Similarity is compared in terms of annual (every month), seasonal, bi-monthly, and monthly averages. To verify the validity of the proposed estimation method, the applied proposed estimation method is used for two islands that have already installed a microgrid consisting of photovoltaic, wind power, energy storage systems, and diesel generators. In comparing the actual data from the two islands, the costs of electricity in terms of microgrid operations show improvements of 37.2% and 29.8%, respectively.

Suggested Citation

  • Chang Koo Lee & Byeong Gwan Bhang & David Kwangsoon Kim & Sang Hun Lee & Hae Lim Cha & Hyung Keun Ahn, 2018. "Estimation of Load Pattern for Optimal Planning of Stand-Alone Microgrid Networks," Energies, MDPI, vol. 11(8), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2012-:d:161540
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/8/2012/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/8/2012/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Woo-Kyu Chae & Hak-Ju Lee & Jong-Nam Won & Jung-Sung Park & Jae-Eon Kim, 2015. "Design and Field Tests of an Inverted Based Remote MicroGrid on a Korean Island," Energies, MDPI, vol. 8(8), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Min Lu & Yu Chen & Debin Zhang & Jingyuan Su & Yong Kang, 2019. "Virtual Synchronous Control Based on Control Winding Orientation for Brushless Doubly Fed Induction Generator (BDFIG) Wind Turbines Under Symmetrical Grid Faults," Energies, MDPI, vol. 12(2), pages 1-12, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eunil Park & Sang Jib Kwon & Angel P. Del Pobil, 2016. "For a Green Stadium: Economic Feasibility of Sustainable Renewable Electricity Generation at the Jeju World Cup Venue," Sustainability, MDPI, vol. 8(10), pages 1-11, September.
    2. Moritz Wegener & Antonio Isalgué & Anders Malmquist & Andrew Martin, 2019. "3E-Analysis of a Bio-Solar CCHP System for the Andaman Islands, India—A Case Study," Energies, MDPI, vol. 12(6), pages 1-19, March.
    3. Timur Yunusov & Maximilian J. Zangs & William Holderbaum, 2017. "Control of Energy Storage," Energies, MDPI, vol. 10(7), pages 1-5, July.
    4. Woo-Kyu Chae & Jong-Nam Won & Hak-Ju Lee & Jae-Eon Kim & Jaehong Kim, 2016. "Comparative Analysis of Voltage Control in Battery Power Converters for Inverter-Based AC Microgrids," Energies, MDPI, vol. 9(8), pages 1-18, July.
    5. Jinwoo Bae & Soojung Lee & Heetae Kim, 2021. "Comparative study on the economic feasibility of nanogrid and microgrid electrification: The case of Jeju Island, South Korea," Energy & Environment, , vol. 32(1), pages 168-188, February.
    6. Park, Eunil & Kwon, Sang Jib, 2016. "Solutions for optimizing renewable power generation systems at Kyung-Hee University׳s Global Campus, South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 439-449.
    7. Rovick Tarife & Yosuke Nakanishi & Yining Chen & Yicheng Zhou & Noel Estoperez & Anacita Tahud, 2022. "Optimization of Hybrid Renewable Energy Microgrid for Rural Agricultural Area in Southern Philippines," Energies, MDPI, vol. 15(6), pages 1-29, March.
    8. Young-Sik Jang & Mun-Kyeom Kim, 2017. "A Dynamic Economic Dispatch Model for Uncertain Power Demands in an Interconnected Microgrid," Energies, MDPI, vol. 10(3), pages 1-16, March.
    9. Heetae Kim & Jinwoo Bae & Seoin Baek & Donggyun Nam & Hyunsung Cho & Hyun Joon Chang, 2017. "Comparative Analysis between the Government Micro-Grid Plan and Computer Simulation Results Based on Real Data: The Practical Case for a South Korean Island," Sustainability, MDPI, vol. 9(2), pages 1-18, January.
    10. Park, Eunil & Kwon, Sang Jib, 2016. "Renewable electricity generation systems for electric-powered taxis: The case of Daejeon metropolitan city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1466-1474.
    11. Hyeon-Jin Moon & Young Jin Kim & Jae Won Chang & Seung-Il Moon, 2019. "Decentralised Active Power Control Strategy for Real-Time Power Balance in an Isolated Microgrid with an Energy Storage System and Diesel Generators," Energies, MDPI, vol. 12(3), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2012-:d:161540. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.