IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i6p997-d213923.html
   My bibliography  Save this article

Voltage Support under Grid Faults with Inherent Current Limitation for Three-Phase Droop-Controlled Inverters

Author

Listed:
  • Alexandros G. Paspatis

    (Department of Automatic Control and Systems Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK)

  • George C. Konstantopoulos

    (Department of Automatic Control and Systems Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK)

Abstract

A novel nonlinear current-limiting controller for three-phase grid-tied droop-controlled inverters that is capable of offering voltage support during balanced and unbalanced grid voltage drops is proposed in this paper. The proposed controller introduces a unified structure under both normal and abnormal grid conditions operating as a droop controller or following the recent fault-ride-through requirement to provide voltage support. In the case of unbalanced faults, the inverter can further inject or absorb the required negative sequence real and reactive power to eliminate the negative sequence voltage at the point of common coupling (PCC) whilst ensuring at all times boundedness for the grid current. To accomplish this task, a novel and easily implementable method for dividing the available current into the two sequences (positive and negative) is proposed, suitably adapting the proposed controller parameters. Furthermore, nonlinear input-to-state stability theory is used to guarantee that the total grid current remains limited below its given maximum value under both normal and abnormal grid conditions. Asymptotic stability for any equilibrium point of the closed-loop system in the bounded operating range is also analytically proven for first time using interconnected-systems stability analysis irrespective of the system parameters. The proposed control concept is verified using an OPAL-RT real-time digital simulation system for a three-phase inverter connected to the grid.

Suggested Citation

  • Alexandros G. Paspatis & George C. Konstantopoulos, 2019. "Voltage Support under Grid Faults with Inherent Current Limitation for Three-Phase Droop-Controlled Inverters," Energies, MDPI, vol. 12(6), pages 1-20, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:997-:d:213923
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/6/997/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/6/997/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Miguel Garnica & Luís García de Vicuña & Jaume Miret & Antonio Camacho & Ramón Guzmán, 2018. "Voltage Support Experimental Analysis of a Low-Voltage Ride-Through Strategy Applied to Grid-Connected Distributed Inverters," Energies, MDPI, vol. 11(8), pages 1-20, July.
    2. Yuanyuan Sun & Peixin Li & Shurong Li & Linghan Zhang, 2017. "Contribution Determination for Multiple Unbalanced Sources at the Point of Common Coupling," Energies, MDPI, vol. 10(2), pages 1-17, February.
    3. Antonio Camacho & Miguel Castilla & Franco Canziani & Carlos Moreira & Paulo Coelho & Mario Gomes & Pedro E. Mercado, 2017. "Performance Comparison of Grid-Faulty Control Schemes for Inverter-Based Industrial Microgrids," Energies, MDPI, vol. 10(12), pages 1-25, December.
    4. Jiawei Chen & Shuaicheng Hou & Xiang Li, 2018. "Decentralized Circulating Currents Suppression for Paralleled Inverters in Microgrids Using Adaptive Virtual Inductances," Energies, MDPI, vol. 11(7), pages 1-16, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chien-Chang Wu & Tsung-Lin Chen, 2020. "Design and Experiment of a Power Sharing Control Circuit for Parallel Fuel Cell Modules," Energies, MDPI, vol. 13(11), pages 1-23, June.
    2. Markel Zubiaga & Carmen Cardozo & Thibault Prevost & Alain Sanchez-Ruiz & Eneko Olea & Pedro Izurza & Siam Hasan Khan & Joseba Arza, 2021. "Enhanced TVI for Grid Forming VSC under Unbalanced Faults," Energies, MDPI, vol. 14(19), pages 1-19, September.
    3. George C. Konstantopoulos & Antonio T. Alexandridis & Panos C. Papageorgiou, 2020. "Towards the Integration of Modern Power Systems into a Cyber–Physical Framework," Energies, MDPI, vol. 13(9), pages 1-20, May.
    4. Li Sun & Hongbo Liu & Chenglian Ma, 2020. "AC Tie-Line Power Oscillation Mechanism and Peak Value Calculation for a Two-Area AC/DC Parallel Interconnected Power System Caused by LCC-HVDC Commutation Failures," Energies, MDPI, vol. 13(5), pages 1-14, March.
    5. Antonio T. Alexandridis, 2020. "Modern Power System Dynamics, Stability and Control," Energies, MDPI, vol. 13(15), pages 1-8, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bharath Varsh Rao & Mark Stefan & Roman Schwalbe & Roman Karl & Friederich Kupzog & Martin Kozek, 2021. "Stratified Control Applied to a Three-Phase Unbalanced Low Voltage Distribution Grid in a Local Peer-to-Peer Energy Community," Energies, MDPI, vol. 14(11), pages 1-19, June.
    2. Alena Otcenasova & Roman Bodnar & Michal Regula & Marek Hoger & Michal Repak, 2017. "Methodology for Determination of the Number of Equipment Malfunctions Due to Voltage Sags," Energies, MDPI, vol. 10(3), pages 1-26, March.
    3. Márcio Arvelos Moraes & Vinícius Henrique Farias Brito & José Carlos de Oliveira, 2022. "An Approach for Determining Voltage Imbalance Contributions Based on Complex Independent Component Analysis," Energies, MDPI, vol. 15(19), pages 1-17, September.
    4. Yalin Liang & Yuyao He & Yun Niu, 2022. "Robust Errorless-Control-Targeted Technique Based on MPC for Microgrid with Uncertain Electric Vehicle Energy Storage Systems," Energies, MDPI, vol. 15(4), pages 1-23, February.
    5. Miguel Garnica & Luís García de Vicuña & Jaume Miret & Antonio Camacho & Ramón Guzmán, 2018. "Voltage Support Experimental Analysis of a Low-Voltage Ride-Through Strategy Applied to Grid-Connected Distributed Inverters," Energies, MDPI, vol. 11(8), pages 1-20, July.
    6. Bharath Varsh Rao & Friederich Kupzog & Martin Kozek, 2018. "Phase Balancing Home Energy Management System Using Model Predictive Control," Energies, MDPI, vol. 11(12), pages 1-19, November.
    7. Yalin Liang & Yuyao He & Yun Niu, 2020. "Microgrid Frequency Fluctuation Attenuation Using Improved Fuzzy Adaptive Damping-Based VSG Considering Dynamics and Allowable Deviation," Energies, MDPI, vol. 13(18), pages 1-23, September.
    8. Yixuan Yang & Ying Wang & Xiaoyang Ma, 2019. "Determining the Responsibility of Three-Phase Unbalanced Sources Based on RICA," Energies, MDPI, vol. 12(15), pages 1-19, July.
    9. Monica Purushotham & Kowsalya Muniswamy, 2019. "Reinforced Droop for Active Current Sharing in Parallel NPC Inverter for Islanded AC Microgrid Application," Energies, MDPI, vol. 12(16), pages 1-27, August.
    10. Zbigniew Olczykowski, 2021. "Electric Arc Furnaces as a Cause of Current and Voltage Asymmetry," Energies, MDPI, vol. 14(16), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:997-:d:213923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.