IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i7p1903-d159141.html
   My bibliography  Save this article

CO 2 Price Volatility Effects on Optimal Power System Portfolios

Author

Listed:
  • Carlo Mari

    (Department of Economics, University of Chieti-Pescara, viale Pindaro 42, 65127 Pescara (PE), Italy)

Abstract

This paper investigates the effects of CO 2 price volatility on optimal power system portfolios and on CO 2 emissions assessment. In a stochastic setting in which three sources of uncertainty are considered, namely fossil fuels (gas and coal) and CO 2 prices, we discuss a unifying scheme for quantifying the impact of integrated environmental and renewable energy policies on the power system. We will show that the effects produced by a given environmental policy scheme strongly depend on the configuration of the power system, i.e., on the composition of the generating sources in the power system portfolio. In the empirical analysis performed on U.S. technical and cost data, we found that a non-volatile carbon tax scheme can produce significant effects on the power system portfolio selection problem in the presence of a carbon-free dispatchable source, like nuclear power, but it may have a negligible impact if the (non-renewable) dispatchable part of the power system portfolio is fully composed by fossil fuel, gas and coal, sources. On the other side, generating CO 2 price volatility market-oriented mechanisms can produce relevant effects on both power system configurations. Although the empirical analysis is performed on U.S. data, the proposed methodology is general and can be used as a quantitative support by policy makers in their attempts to reconcile environmental and economic issues.

Suggested Citation

  • Carlo Mari, 2018. "CO 2 Price Volatility Effects on Optimal Power System Portfolios," Energies, MDPI, vol. 11(7), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1903-:d:159141
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/7/1903/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/7/1903/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Westner, Günther & Madlener, Reinhard, 2010. "The benefit of regional diversification of cogeneration investments in Europe: A mean-variance portfolio analysis," Energy Policy, Elsevier, vol. 38(12), pages 7911-7920, December.
    2. Yang, Ming & Blyth, William & Bradley, Richard & Bunn, Derek & Clarke, Charlie & Wilson, Tom, 2008. "Evaluating the power investment options with uncertainty in climate policy," Energy Economics, Elsevier, vol. 30(4), pages 1933-1950, July.
    3. Feng, Zhen-Hua & Zou, Le-Le & Wei, Yi-Ming, 2011. "Carbon price volatility: Evidence from EU ETS," Applied Energy, Elsevier, vol. 88(3), pages 590-598, March.
    4. Delarue, Erik & Van den Bergh, Kenneth, 2016. "Carbon mitigation in the electric power sector under cap-and-trade and renewables policies," Energy Policy, Elsevier, vol. 92(C), pages 34-44.
    5. Mari, Carlo, 2014. "Hedging electricity price volatility using nuclear power," Applied Energy, Elsevier, vol. 113(C), pages 615-621.
    6. Roques, Fabien A. & Newbery, David M. & Nuttall, William J., 2008. "Fuel mix diversification incentives in liberalized electricity markets: A Mean-Variance Portfolio theory approach," Energy Economics, Elsevier, vol. 30(4), pages 1831-1849, July.
    7. Barbara Glensk & Reinhard Madlener, 2018. "Fuzzy Portfolio Optimization of Power Generation Assets," Energies, MDPI, vol. 11(11), pages 1-22, November.
    8. Bhattacharya, Anindya & Kojima, Satoshi, 2012. "Power sector investment risk and renewable energy: A Japanese case study using portfolio risk optimization method," Energy Policy, Elsevier, vol. 40(C), pages 69-80.
    9. Hanson, Donald & Schmalzer, David & Nichols, Christopher & Balash, Peter, 2016. "The impacts of meeting a tight CO2 performance standard on the electric power sector," Energy Economics, Elsevier, vol. 60(C), pages 476-485.
    10. Balietti, Anca Claudia, 2016. "Trader types and volatility of emission allowance prices. Evidence from EU ETS Phase I," Energy Policy, Elsevier, vol. 98(C), pages 607-620.
    11. Lucheroni, Carlo & Mari, Carlo, 2017. "CO2 volatility impact on energy portfolio choice: A fully stochastic LCOE theory analysis," Applied Energy, Elsevier, vol. 190(C), pages 278-290.
    12. Carlo Lucheroni & Carlo Mari, 2018. "Optimal Integration of Intermittent Renewables: A System LCOE Stochastic Approach," Energies, MDPI, vol. 11(3), pages 1-21, March.
    13. Kümmel, Reiner & Lindenberger, Dietmar & Weiser, Florian, 2015. "The economic power of energy and the need to integrate it with energy policy," Energy Policy, Elsevier, vol. 86(C), pages 833-843.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ren, Ming & Lu, Pantao & Liu, Xiaorui & Hossain, M.S. & Fang, Yanru & Hanaoka, Tatsuya & O'Gallachoir, Brian & Glynn, James & Dai, Hancheng, 2021. "Decarbonizing China’s iron and steel industry from the supply and demand sides for carbon neutrality," Applied Energy, Elsevier, vol. 298(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlo Mari, 2020. "Stochastic NPV Based vs Stochastic LCOE Based Power Portfolio Selection Under Uncertainty," Energies, MDPI, vol. 13(14), pages 1-18, July.
    2. Carlo Lucheroni & Carlo Mari, 2021. "Internal hedging of intermittent renewable power generation and optimal portfolio selection," Annals of Operations Research, Springer, vol. 299(1), pages 873-893, April.
    3. Frank A. Wolak, 2016. "Level versus Variability Trade-offs in Wind and Solar Generation Investments: The Case of California," NBER Working Papers 22494, National Bureau of Economic Research, Inc.
    4. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2017. "Risk-based methods for sustainable energy system planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 602-615.
    5. Pérez Odeh, Rodrigo & Watts, David & Negrete-Pincetic, Matías, 2018. "Portfolio applications in electricity markets review: Private investor and manager perspective trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 192-204.
    6. Paulino Martinez-Fernandez & Fernando deLlano-Paz & Anxo Calvo-Silvosa & Isabel Soares, 2019. "Assessing Renewable Energy Sources for Electricity (RES-E) Potential Using a CAPM-Analogous Multi-Stage Model," Energies, MDPI, vol. 12(19), pages 1-20, September.
    7. Paulino Martinez-Fernandez & Fernando deLlano-Paz & Anxo Calvo-Silvosa & Isabel Soares, 2018. "Pollutant versus non-pollutant generation technologies: a CML-analogous analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 199-212, December.
    8. Carlo Lucheroni & Carlo Mari, 2018. "Optimal Integration of Intermittent Renewables: A System LCOE Stochastic Approach," Energies, MDPI, vol. 11(3), pages 1-21, March.
    9. Frank A. Wolak, 2016. "Level versus Variability Trade-offs in Wind and Solar Generation Investments: The Case of California," The Energy Journal, International Association for Energy Economics, vol. 0(Bollino-M).
    10. Turkson, Charles & Liu, Wenbin & Acquaye, Adolf, 2024. "A data envelopment analysis based evaluation of sustainable energy generation portfolio scenarios," Applied Energy, Elsevier, vol. 363(C).
    11. deLlano-Paz, Fernando & Calvo-Silvosa, Anxo & Antelo, Susana Iglesias & Soares, Isabel, 2017. "Energy planning and modern portfolio theory: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 636-651.
    12. Barbara Glensk & Reinhard Madlener, 2013. "Multi-period portfolio optimization of power generation assets," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 23(4), pages 20-38.
    13. John Foster & Liam Wagner & Phil Wild & Junhua Zhao & Lucas Skoofa & Craig Froome, 2011. "Market and Economic Modelling of the Intelligent Grid: End of Year Report 2009," Energy Economics and Management Group Working Papers 09, School of Economics, University of Queensland, Australia.
    14. Westner, Günther & Madlener, Reinhard, 2011. "Development of cogeneration in Germany: A mean-variance portfolio analysis of individual technology’s prospects in view of the new regulatory framework," Energy, Elsevier, vol. 36(8), pages 5301-5313.
    15. Arash Farnoosh, 2016. "On the economic optimization of national power generation mix in Iran: A Markowitz' portfolio-based approach," Working Papers hal-02475534, HAL.
    16. Westner, Günther & Madlener, Reinhard, 2010. "The benefit of regional diversification of cogeneration investments in Europe: A mean-variance portfolio analysis," Energy Policy, Elsevier, vol. 38(12), pages 7911-7920, December.
    17. Inzunza, Andrés & Muñoz, Francisco D. & Moreno, Rodrigo, 2021. "Measuring the effects of environmental policies on electricity markets risk," Energy Economics, Elsevier, vol. 102(C).
    18. Chuang, Ming Chih & Ma, Hwong Wen, 2013. "Energy security and improvements in the function of diversity indices—Taiwan energy supply structure case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 9-20.
    19. deLlano-Paz, Fernando & Calvo-Silvosa, Anxo & Iglesias Antelo, Susana & Soares, Isabel, 2015. "The European low-carbon mix for 2030: The role of renewable energy sources in an environmentally and socially efficient approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 49-61.
    20. Costa, Oswaldo L.V. & de Oliveira Ribeiro, Celma & Rego, Erik Eduardo & Stern, Julio Michael & Parente, Virginia & Kileber, Solange, 2017. "Robust portfolio optimization for electricity planning: An application based on the Brazilian electricity mix," Energy Economics, Elsevier, vol. 64(C), pages 158-169.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1903-:d:159141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.