IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i7p1891-d158945.html
   My bibliography  Save this article

Distributed Energy Sharing for PVT-HP Prosumers in Community Energy Internet: A Consensus Approach

Author

Listed:
  • Nian Liu

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China)

  • Bin Guo

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China)

  • Zifa Liu

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China)

  • Yongli Wang

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

Abstract

Community Energy Internet (CEI) integrates electric network and thermal network based on combined heat and power (CHP) to improve the economy of energy system in Smart Community. In the CEI, an energy sharing framework for prosumers equipped with photovoltaic-thermal (PVT) system and heat pump (HP) is introduced. Supporting by the PVT and HP, the prosumer has four role attributes with either heat or electricity producer/consumer. A social welfare maximization model is built for the CEI, including PVT-HP prosumers, CHP system, and utility grid. Considering there are multiply participants in the local market of CEI, the social welfare maximization problem is decoupled by using Lagrange multiplier method. Moreover, a consensus-based fully distributed algorithm is designed to solve the problem. Finally, six residential buildings are selected as the case study to validate the effectiveness of the proposed method.

Suggested Citation

  • Nian Liu & Bin Guo & Zifa Liu & Yongli Wang, 2018. "Distributed Energy Sharing for PVT-HP Prosumers in Community Energy Internet: A Consensus Approach," Energies, MDPI, vol. 11(7), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1891-:d:158945
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/7/1891/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/7/1891/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Jiangjiang & Sui, Jun & Jin, Hongguang, 2015. "An improved operation strategy of combined cooling heating and power system following electrical load," Energy, Elsevier, vol. 85(C), pages 654-666.
    2. Liang, Yile & Liu, Feng & Wang, Cheng & Mei, Shengwei, 2017. "Distributed demand-side energy management scheme in residential smart grids: An ordinal state-based potential game approach," Applied Energy, Elsevier, vol. 206(C), pages 991-1008.
    3. He, Wei & Chow, Tin-Tai & Ji, Jie & Lu, Jianping & Pei, Gang & Chan, Lok-shun, 2006. "Hybrid photovoltaic and thermal solar-collector designed for natural circulation of water," Applied Energy, Elsevier, vol. 83(3), pages 199-210, March.
    4. Radziemska, E., 2003. "The effect of temperature on the power drop in crystalline silicon solar cells," Renewable Energy, Elsevier, vol. 28(1), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frederik Plewnia, 2019. "The Energy System and the Sharing Economy: Interfaces and Overlaps and What to Learn from Them," Energies, MDPI, vol. 12(3), pages 1-17, January.
    2. Zain Ul Abdin & Ahmed Rachid, 2021. "A Survey on Applications of Hybrid PV/T Panels," Energies, MDPI, vol. 14(4), pages 1-23, February.
    3. Bauwens, Thomas & Schraven, Daan & Drewing, Emily & Radtke, Jörg & Holstenkamp, Lars & Gotchev, Boris & Yildiz, Özgür, 2022. "Conceptualizing community in energy systems: A systematic review of 183 definitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    4. Francisco G. Montoya & Raúl Baños & Alfredo Alcayde & Francisco Manzano-Agugliaro, 2019. "Optimization Methods Applied to Power Systems," Energies, MDPI, vol. 12(12), pages 1-8, June.
    5. Claudio Giovanni Mattera & Hamid Reza Shaker & Muhyiddine Jradi, 2019. "Consensus-Based Method for Anomaly Detection in VAV Units," Energies, MDPI, vol. 12(3), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhenpeng & Ma, Tao & Zhao, Jiaxin & Song, Aotian & Cheng, Yuanda, 2019. "Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material," Energy, Elsevier, vol. 178(C), pages 471-486.
    2. Erdil, Erzat & Ilkan, Mustafa & Egelioglu, Fuat, 2008. "An experimental study on energy generation with a photovoltaic (PV)–solar thermal hybrid system," Energy, Elsevier, vol. 33(8), pages 1241-1245.
    3. Makki, Adham & Omer, Siddig & Sabir, Hisham, 2015. "Advancements in hybrid photovoltaic systems for enhanced solar cells performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 658-684.
    4. Agrawal, Basant & Tiwari, G.N., 2010. "Optimizing the energy and exergy of building integrated photovoltaic thermal (BIPVT) systems under cold climatic conditions," Applied Energy, Elsevier, vol. 87(2), pages 417-426, February.
    5. Zhou, Yuan & Wang, Jiangjiang & Dong, Fuxiang & Qin, Yanbo & Ma, Zherui & Ma, Yanpeng & Li, Jianqiang, 2021. "Novel flexibility evaluation of hybrid combined cooling, heating and power system with an improved operation strategy," Applied Energy, Elsevier, vol. 300(C).
    6. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
    7. Li, Guiqiang & Pei, Gang & Ji, Jie & Su, Yuehong, 2015. "Outdoor overall performance of a novel air-gap-lens-walled compound parabolic concentrator (ALCPC) incorporated with photovoltaic/thermal system," Applied Energy, Elsevier, vol. 144(C), pages 214-223.
    8. Mojiri, Ahmad & Stanley, Cameron & Rodriguez-Sanchez, David & Everett, Vernie & Blakers, Andrew & Rosengarten, Gary, 2016. "A spectral-splitting PV–thermal volumetric solar receiver," Applied Energy, Elsevier, vol. 169(C), pages 63-71.
    9. Daghigh, R. & Ruslan, M.H. & Sopian, K., 2011. "Advances in liquid based photovoltaic/thermal (PV/T) collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4156-4170.
    10. Kang, Ligai & Yang, Junhong & An, Qingsong & Deng, Shuai & Zhao, Jun & Wang, Hui & Li, Zelin, 2017. "Effects of load following operational strategy on CCHP system with an auxiliary ground source heat pump considering carbon tax and electricity feed in tariff," Applied Energy, Elsevier, vol. 194(C), pages 454-466.
    11. Zhang, Han & Han, Zhonghe & Wu, Di & Li, Peng & Li, Peng, 2023. "Energy optimization and performance analysis of a novel integrated energy system coupled with solar thermal unit and preheated organic cycle under extended following electric load strategy," Energy, Elsevier, vol. 272(C).
    12. Rajput, Usman Jamil & Yang, Jun, 2018. "Comparison of heat sink and water type PV/T collector for polycrystalline photovoltaic panel cooling," Renewable Energy, Elsevier, vol. 116(PA), pages 479-491.
    13. Wu, Jinshun & Zhang, Xingxing & Shen, Jingchun & Wu, Yupeng & Connelly, Karen & Yang, Tong & Tang, Llewellyn & Xiao, Manxuan & Wei, Yixuan & Jiang, Ke & Chen, Chao & Xu, Peng & Wang, Hong, 2017. "A review of thermal absorbers and their integration methods for the combined solar photovoltaic/thermal (PV/T) modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 839-854.
    14. Sargunanathan, S. & Elango, A. & Mohideen, S. Tharves, 2016. "Performance enhancement of solar photovoltaic cells using effective cooling methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 382-393.
    15. Kahoul, Nabil & Chenni, Rachid & Cheghib, Hocine & Mekhilef, Saad, 2017. "Evaluating the reliability of crystalline silicon photovoltaic modules in harsh environment," Renewable Energy, Elsevier, vol. 109(C), pages 66-72.
    16. Gan Huang & Jingyuan Xu & Christos N. Markides, 2023. "High-efficiency bio-inspired hybrid multi-generation photovoltaic leaf," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Al-Shamani, Ali Najah & Yazdi, Mohammad H. & Alghoul, M.A. & Abed, Azher M. & Ruslan, M.H. & Mat, Sohif & Sopian, K., 2014. "Nanofluids for improved efficiency in cooling solar collectors – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 348-367.
    18. Wilson, Earle, 2009. "Theoretical and operational thermal performance of a ‘wet’ crystalline silicon PV module under Jamaican conditions," Renewable Energy, Elsevier, vol. 34(6), pages 1655-1660.
    19. Jin, Baohong, 2023. "Impact of renewable energy penetration in power systems on the optimization and operation of regional distributed energy systems," Energy, Elsevier, vol. 273(C).
    20. Gaur, Ankita & Tiwari, G.N., 2014. "Performance of a-Si thin film PV modules with and without water flow: An experimental validation," Applied Energy, Elsevier, vol. 128(C), pages 184-191.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1891-:d:158945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.