IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6376-d903647.html
   My bibliography  Save this article

Transport Efficiency of a Homogeneous Gaseous Substance in the Presence of Positive and Negative Gaseous Sources of Mass and Momentum

Author

Listed:
  • Bogusław Ptaszyński

    (Faculty of Civil Engineering and Resource Management, AGH University of Science and Technology, 30-059 Krakow, Poland
    Retired employee.)

  • Zbigniew Kuczera

    (Faculty of Civil Engineering and Resource Management, AGH University of Science and Technology, 30-059 Krakow, Poland)

  • Piotr Życzkowski

    (Faculty of Civil Engineering and Resource Management, AGH University of Science and Technology, 30-059 Krakow, Poland)

  • Rafał Łuczak

    (Faculty of Civil Engineering and Resource Management, AGH University of Science and Technology, 30-059 Krakow, Poland)

Abstract

In this article, a theoretical mathematical model of gas flow through a duct in the case of local mass and momentum sources and sinks is presented. The continuity equation and motion equation with one-dimensional, density-stable gas flows were used to create this model. The size of sources and sinks and their locations have an effect on the size of gas stream flows in the duct, gas energy losses, and the parameters of the mechanical source energy that is causing the flow. In the traditional approach to describing the gas flow in the duct, the concept of resistivity and the equivalent resistance of the conduit is used. In the case of flow in the duct with local mass and momentum sources and sinks, the transport resistance depends on a bigger number of parameters than the concept of specific resistance usage. The location and size of the source flux or mass and momentum sinks and the fan work (suction, blowing) were taken into account in the presented model. The model gives the opportunity to determine the mechanical energy losses and efficiency of gas transport in the duct.

Suggested Citation

  • Bogusław Ptaszyński & Zbigniew Kuczera & Piotr Życzkowski & Rafał Łuczak, 2022. "Transport Efficiency of a Homogeneous Gaseous Substance in the Presence of Positive and Negative Gaseous Sources of Mass and Momentum," Energies, MDPI, vol. 15(17), pages 1-11, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6376-:d:903647
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6376/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6376/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wacław Dziurzyński & Andrzej Krach & Teresa Pałka, 2017. "Airflow Sensitivity Assessment Based on Underground Mine Ventilation Systems Modeling," Energies, MDPI, vol. 10(10), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bogusław Ptaszyński & Rafał Łuczak & Zbigniew Kuczera & Piotr Życzkowski, 2022. "Influence of Local Gas Sources with Variable Density and Momentum on the Flow of the Medium in the Conduit," Energies, MDPI, vol. 15(16), pages 1-14, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aleksander Król & Małgorzata Król, 2018. "Transient Analyses and Energy Balance of Air Flow in Road Tunnels," Energies, MDPI, vol. 11(7), pages 1-15, July.
    2. Aleksander Król & Małgorzata Król, 2018. "Study on Hot Gases Flow in Case of Fire in a Road Tunnel," Energies, MDPI, vol. 11(3), pages 1-16, March.
    3. Jie Hou & Gang Nie & Guoqing Li & Wei Zhao & Baoli Sheng, 2023. "Optimization of Branch Airflow Volume for Mine Ventilation Network Based on Sensitivity Matrix," Sustainability, MDPI, vol. 15(16), pages 1-14, August.
    4. Nikodem Szlązak & Marek Korzec, 2022. "The Solution of the Main Fan Station for Underground Mines Being Decommissioned in Terms of Reducing Energy Consumption by Ventilation," Energies, MDPI, vol. 15(13), pages 1-13, June.
    5. Bogusław Ptaszyński & Rafał Łuczak & Zbigniew Kuczera & Piotr Życzkowski, 2022. "Influence of Local Gas Sources with Variable Density and Momentum on the Flow of the Medium in the Conduit," Energies, MDPI, vol. 15(16), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6376-:d:903647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.