IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1578-d152807.html
   My bibliography  Save this article

Industrial-Scale Experimental Study on the Thermal Oxidation of Ventilation Air Methane and the Heat Recovery in a Multibed Thermal Flow-Reversal Reactor

Author

Listed:
  • Bo Lan

    (Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education, College of Power Engineering, Chongqing University, Chongqing 400044, China
    China Coal Technology and Engineering Group Chongqing Research Institute, Chongqing 400037, China)

  • You-Rong Li

    (Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education, College of Power Engineering, Chongqing University, Chongqing 400044, China)

  • Xu-Sheng Zhao

    (China Coal Technology and Engineering Group Chongqing Research Institute, Chongqing 400037, China)

  • Jian-Dong Kang

    (China Coal Technology and Engineering Group Chongqing Research Institute, Chongqing 400037, China)

Abstract

In the present work, an industrial-scale experiment on ventilation air methane (VAM) utilization by a multibed thermal flow-reversal reactor (TFRR) is conducted in China. The influence of the inlet flow rate, feed methane concentration, and cycle time on the temperature distribution of the bed and heat recovery efficiency are investigated. The methane conversion in the studied cases exceeds 97%. The results show that the methane concentration during self-maintained operation of the TFRR without heat recovery should not be less than 0.22 vol % when the inlet flow rate is 103,000 Nm 3 /h and the cycle time is 300 s. As the inlet flow rate decreases, the lower concentration limit of automatic thermal maintenance increases. The peak temperature of the bed approaches the inlet side as the feed methane concentration increases and the cycle time decreases. The heat recovery efficiency increases linearly with increasing inlet flow rate, rises parabolically with an increasing feed methane concentration, and decreases weakly with increasing cycle time.

Suggested Citation

  • Bo Lan & You-Rong Li & Xu-Sheng Zhao & Jian-Dong Kang, 2018. "Industrial-Scale Experimental Study on the Thermal Oxidation of Ventilation Air Methane and the Heat Recovery in a Multibed Thermal Flow-Reversal Reactor," Energies, MDPI, vol. 11(6), pages 1-13, June.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1578-:d:152807
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1578/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1578/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gosiewski, Krzysztof & Pawlaczyk, Anna & Jaschik, Manfred, 2015. "Energy recovery from ventilation air methane via reverse-flow reactors," Energy, Elsevier, vol. 92(P1), pages 13-23.
    2. Xiong Yang & Yingshu Liu & Ziyi Li & Chuanzhao Zhang & Yi Xing, 2018. "Vacuum Exhaust Process in Pilot-Scale Vacuum Pressure Swing Adsorption for Coal Mine Ventilation Air Methane Enrichment," Energies, MDPI, vol. 11(5), pages 1-13, April.
    3. George Dalianis & Evanthia Nanaki & George Xydis & Efthimios Zervas, 2016. "New Aspects to Greenhouse Gas Mitigation Policies for Low Carbon Cities," Energies, MDPI, vol. 9(3), pages 1-16, February.
    4. Karakurt, Izzet & Aydin, Gokhan & Aydiner, Kerim, 2011. "Mine ventilation air methane as a sustainable energy source," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1042-1049, February.
    5. Wen Wang & Heng Wang & Huamin Li & Dongyin Li & Huaibin Li & Zhenhua Li, 2018. "Experimental Enrichment of Low-Concentration Ventilation Air Methane in Free Diffusion Conditions," Energies, MDPI, vol. 11(2), pages 1-11, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marek Borowski & Piotr Życzkowski & Rafał Łuczak & Michał Karch & Jianwei Cheng, 2019. "Tests to Ensure the Minimum Methane Concentration for Gas Engines to Limit Atmospheric Emissions," Energies, MDPI, vol. 13(1), pages 1-15, December.
    2. Bo Lan & Peng-Fei Gao & You-Rong Li & Jia-Jia Yu & Peng-Cheng Li, 2022. "Numerical Simulation and Theoretical Analysis of Flow Resistance Characteristics in the Honeycomb Ceramic Conduit," Energies, MDPI, vol. 15(19), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen Wang & Heng Wang & Huamin Li & Dongyin Li & Huaibin Li & Zhenhua Li, 2018. "Experimental Enrichment of Low-Concentration Ventilation Air Methane in Free Diffusion Conditions," Energies, MDPI, vol. 11(2), pages 1-11, February.
    2. Marek Borowski & Piotr Życzkowski & Rafał Łuczak & Michał Karch & Jianwei Cheng, 2019. "Tests to Ensure the Minimum Methane Concentration for Gas Engines to Limit Atmospheric Emissions," Energies, MDPI, vol. 13(1), pages 1-15, December.
    3. Bo Lan & Peng-Fei Gao & You-Rong Li & Jia-Jia Yu & Peng-Cheng Li, 2022. "Numerical Simulation and Theoretical Analysis of Flow Resistance Characteristics in the Honeycomb Ceramic Conduit," Energies, MDPI, vol. 15(19), pages 1-14, October.
    4. Hui Liu & Shanjun Mao & Mei Li, 2019. "A Case Study of an Optimized Intermittent Ventilation Strategy Based on CFD Modeling and the Concept of FCT," Energies, MDPI, vol. 12(4), pages 1-16, February.
    5. Yongkang Yang & Qiaoyi Du & Chenlong Wang & Yu Bai, 2020. "Research on the Method of Methane Emission Prediction Using Improved Grey Radial Basis Function Neural Network Model," Energies, MDPI, vol. 13(22), pages 1-15, November.
    6. Marek Borowski & Piotr Życzkowski & Jianwei Cheng & Rafał Łuczak & Klaudia Zwolińska, 2020. "The Combustion of Methane from Hard Coal Seams in Gas Engines as a Technology Leading to Reducing Greenhouse Gas Emissions—Electricity Prediction Using ANN," Energies, MDPI, vol. 13(17), pages 1-18, August.
    7. Magdalena Tutak & Jarosław Brodny, 2019. "Forecasting Methane Emissions from Hard Coal Mines Including the Methane Drainage Process," Energies, MDPI, vol. 12(20), pages 1-28, October.
    8. Liyan Feng & Jun Zhai & Lei Chen & Wuqiang Long & Jiangping Tian & Bin Tang, 2017. "Increasing the application of gas engines to decrease China’s GHG emissions," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(6), pages 839-861, August.
    9. Jiang, Haipeng & Bi, Mingshu & Gao, Zehua & Zhang, Zongling & Gao, Wei, 2022. "Effect of turbulence intensity on flame propagation and extinction limits of methane/coal dust explosions," Energy, Elsevier, vol. 239(PC).
    10. Torgrim Log & Wegar Bjerkeli Pedersen, 2019. "A Common Risk Classification Concept for Safety Related Gas Leaks and Fugitive Emissions?," Energies, MDPI, vol. 12(21), pages 1-17, October.
    11. Marín, Pablo & Díez, Fernando V. & Ordóñez, Salvador, 2014. "A new method for controlling the ignition state of a regenerative combustor using a heat storage device," Applied Energy, Elsevier, vol. 116(C), pages 322-332.
    12. He, Li & Fan, Yilin & Bellettre, Jérôme & Yue, Jun & Luo, Lingai, 2020. "A review on catalytic methane combustion at low temperatures: Catalysts, mechanisms, reaction conditions and reactor designs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    13. Bai, Yang & Lin, Hai-Fei & Li, Shu-Gang & Long, Hang & Yan, Min & Li, Yong & Qin, Lei & Zhou, Bin, 2022. "Experimental study on kinetic characteristics of gas diffusion in coal under nitrogen injection," Energy, Elsevier, vol. 254(PA).
    14. Jinsheng Lv & Junrui Shi & Mingming Mao & Xiangjin Kong & Dan Zhou, 2021. "A Steady State Model for Burning Coal Mine Methane in a Reverse Flow Burner," Energies, MDPI, vol. 14(23), pages 1-11, November.
    15. Mariusz Dacko & Lukasz Paluch & Bartosz Mickiewicz & Pawel Mickiewicz & Maciej Nowak, 2020. "Energy Production and Consumption in the European Union - Assessment of Changes in the Aspects of Sustainability and the Energy Self-Sufficiency," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 1), pages 1100-1112.
    16. Panagiotis Michalitsakos & Lucian Mihet-Popa & George Xydis, 2017. "A Hybrid RES Distributed Generation System for Autonomous Islands: A DER-CAM and Storage-Based Economic and Optimal Dispatch Analysis," Sustainability, MDPI, vol. 9(11), pages 1-16, November.
    17. Prabu, V. & Mallick, Nirmal, 2015. "Coalbed methane with CO2 sequestration: An emerging clean coal technology in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 229-244.
    18. Orhan Altuğ Karabiber & George Xydis, 2019. "Electricity Price Forecasting in the Danish Day-Ahead Market Using the TBATS, ANN and ARIMA Methods," Energies, MDPI, vol. 12(5), pages 1-29, March.
    19. Cheng Xu & Yachi Gao & Qiang Zhang & Guoqiang Zhang & Gang Xu, 2018. "Thermodynamic, Economic and Environmental Evaluation of an Improved Ventilation Air Methane-Based Hot Air Power Cycle Integrated with a De-Carbonization Oxy-Coal Combustion Power Plant," Energies, MDPI, vol. 11(6), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1578-:d:152807. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.