IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v92y2015ip1p13-23.html
   My bibliography  Save this article

Energy recovery from ventilation air methane via reverse-flow reactors

Author

Listed:
  • Gosiewski, Krzysztof
  • Pawlaczyk, Anna
  • Jaschik, Manfred

Abstract

Nearly 70% of the methane released from hard coal seams, as the so-called Ventilation Air Methane, is emitted to the atmosphere with the air discharged by the mine ventilation system. Therefore, utilization of this emission, especially with a rational heat recovery becomes an important challenge for hard coal mines. The paper proposes combustion in Thermal Flow Reversal Reactors, currently as the most promising and technically advanced method of solving this problem. The operating principle of such reactors is briefly described with a short review of the current literature on the subject, particularly focussing on aspects of heat recovery. A progress report of research and development activities, carried out in the recent years in the Institute of Chemical Engineering, Polish Academy of Sciences in Gliwice, Poland, has been given. This part provides a brief overview of kinetic studies on thermal combustion, results of experiments carried out on a research and demonstration plant, discussion of computer simulations as well as preliminary analysis of the possibilities of the process intensification. The article draws attention to the possibility of thermal asymmetry formation in the flow reversal reactors. The ways of the process control to prevent asymmetry are also discussed.

Suggested Citation

  • Gosiewski, Krzysztof & Pawlaczyk, Anna & Jaschik, Manfred, 2015. "Energy recovery from ventilation air methane via reverse-flow reactors," Energy, Elsevier, vol. 92(P1), pages 13-23.
  • Handle: RePEc:eee:energy:v:92:y:2015:i:p1:p:13-23
    DOI: 10.1016/j.energy.2015.06.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215006714
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.06.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bo Lan & Peng-Fei Gao & You-Rong Li & Jia-Jia Yu & Peng-Cheng Li, 2022. "Numerical Simulation and Theoretical Analysis of Flow Resistance Characteristics in the Honeycomb Ceramic Conduit," Energies, MDPI, vol. 15(19), pages 1-14, October.
    2. Bo Lan & You-Rong Li & Xu-Sheng Zhao & Jian-Dong Kang, 2018. "Industrial-Scale Experimental Study on the Thermal Oxidation of Ventilation Air Methane and the Heat Recovery in a Multibed Thermal Flow-Reversal Reactor," Energies, MDPI, vol. 11(6), pages 1-13, June.
    3. Jinsheng Lv & Junrui Shi & Mingming Mao & Xiangjin Kong & Dan Zhou, 2021. "A Steady State Model for Burning Coal Mine Methane in a Reverse Flow Burner," Energies, MDPI, vol. 14(23), pages 1-11, November.
    4. He, Li & Fan, Yilin & Bellettre, Jérôme & Yue, Jun & Luo, Lingai, 2020. "A review on catalytic methane combustion at low temperatures: Catalysts, mechanisms, reaction conditions and reactor designs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:92:y:2015:i:p1:p:13-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.